scholarly journals Kardar-Parisi-Zhang equation in a half space with flat initial condition and the unbinding of a directed polymer from an attractive wall

2021 ◽  
Vol 104 (2) ◽  
Author(s):  
Guillaume Barraquand ◽  
Pierre Le Doussal
2012 ◽  
Vol 100 (2) ◽  
pp. 26006 ◽  
Author(s):  
Thomas Gueudré ◽  
Pierre Le Doussal

Author(s):  
Erdogan S. Suhubi ◽  
Alan Jeffrey

SYNOPSISThis paper investigates the one-dimensional propagation of weak discontinuities, that is acceleration waves, in a homogeneous and isotropic half-space composed of an arbitrary number of non-linearly hyperelastic layers. The transmission and reflection coefficients are evaluated in terms of the initial condition at the boundary, and the steepening of the waves to form a shock is discussed. The results are specialised to the case of periodic layering.


2002 ◽  
Vol 716 ◽  
Author(s):  
Victor I. Kol'dyaev

AbstractIt is accepted that surface Ge atoms are considered to be responsible for the surface B segregation process. A set of original experiments is carried out. A main observation from the B and Ge profiles grown at different conditions shows that at certain conditions B is taking initiative and determine the Ge surface segregation process. basic assumptions are suggested to self-consistently explain these original experimental features and what is observed in the literature. These results have a strong implication for modeling the B diffusion in Si1-xGex where the initial conditions should be formulated accounting for the correlation in B and Ge distribution. A new assumption for the initial condition to be “all B atoms are captured by Ge” is regarded as a right one implicating that there is no any transient diffusion representing the B capturing kinetics.


2015 ◽  
Vol 37 (4) ◽  
pp. 303-315 ◽  
Author(s):  
Pham Chi Vinh ◽  
Nguyen Thi Khanh Linh ◽  
Vu Thi Ngoc Anh

This paper presents  a technique by which the transfer matrix in explicit form of an orthotropic layer can be easily obtained. This transfer matrix is applicable for both the wave propagation problem and the reflection/transmission problem. The obtained transfer matrix is then employed to derive the explicit secular equation of Rayleigh waves propagating in an orthotropic half-space coated by an orthotropic layer of arbitrary thickness.


Sign in / Sign up

Export Citation Format

Share Document