Is it a Right Assumption That B and Ge are Distributed Randomly After Growing a Strained HBT-Structure?

2002 ◽  
Vol 716 ◽  
Author(s):  
Victor I. Kol'dyaev

AbstractIt is accepted that surface Ge atoms are considered to be responsible for the surface B segregation process. A set of original experiments is carried out. A main observation from the B and Ge profiles grown at different conditions shows that at certain conditions B is taking initiative and determine the Ge surface segregation process. basic assumptions are suggested to self-consistently explain these original experimental features and what is observed in the literature. These results have a strong implication for modeling the B diffusion in Si1-xGex where the initial conditions should be formulated accounting for the correlation in B and Ge distribution. A new assumption for the initial condition to be “all B atoms are captured by Ge” is regarded as a right one implicating that there is no any transient diffusion representing the B capturing kinetics.

2005 ◽  
Vol 133 (11) ◽  
pp. 3148-3175 ◽  
Author(s):  
Daryl T. Kleist ◽  
Michael C. Morgan

Abstract The 24–25 January 2000 eastern United States snowstorm was noteworthy as operational numerical weather prediction (NWP) guidance was poor for lead times as short as 36 h. Despite improvements in the forecast of the surface cyclone position and intensity at 1200 UTC 25 January 2000 with decreasing lead time, NWP guidance placed the westward extent of the midtropospheric, frontogenetically forced precipitation shield too far to the east. To assess the influence of initial condition uncertainties on the forecast of this event, an adjoint model is used to evaluate forecast sensitivities for 36- and 48-h forecasts valid at 1200 UTC 25 January 2000 using as response functions the energy-weighted forecast error, lower-tropospheric circulation about a box surrounding the surface cyclone, 750-hPa frontogenesis, and vertical motion. The sensitivities with respect to the initial conditions for these response functions are in general very similar: geographically isolated, maximized in the middle and lower troposphere, and possessing an upshear vertical tilt. The sensitivities are maximized in a region of enhanced low-level baroclinicity in the vicinity of the surface cyclone’s precursor upper trough. However, differences in the phase and structure of the gradients for the four response functions are evident, which suggests that perturbations could be constructed to alter one response function but not necessarily the others. Gradients of the forecast error response function with respect to the initial conditions are used in an iterative procedure to construct initial condition perturbations that reduce the forecast error. These initial condition perturbations were small in terms of both spatial scale and magnitude. Those initial condition perturbations that were confined primarily to the midtroposphere grew rapidly into much larger amplitude upper-and-lower tropospheric perturbations. The perturbed forecasts were not only characterized by reduced final time forecast error, but also had a synoptic evolution that more closely followed analyses and observations.


2018 ◽  
Vol 36 (1) ◽  
pp. 334-355
Author(s):  
Yuan Li ◽  
J. Zhang ◽  
Yudong Zhong ◽  
Xiaomin Shu ◽  
Yunqiao Dong

Purpose The Convolution Quadrature Method (CQM) has been widely applied to solve transient elastodynamic problems because of its stability and generality. However, the CQM suffers from the problems of huge memory requirement in case of direct implementation in time domain or CPU time in case of its reformulation in Laplace domain. The purpose of this paper is to combine the CQM with the pseudo-initial condition method (PICM) to achieve a good balance between memory requirement and CPU time. Design/methodology/approach The combined methods first subdivide the whole analysis into a few sub-analyses, which is dealt with the PICM, namely, the results obtained by previous sub-analysis are used as the initial conditions for the next sub-analysis. In each sub-analysis, the time interval is further discretized into a number of sub-steps and dealt with the CQM. For non-zero initial conditions, the pseudo-force method is used to transform them into equivalent body forces. The boundary face method is employed in the numerical implementation. Three examples are analyzed. Results are compared with analytical solutions or FEM results and the results of reformulated CQM. Findings Results demonstrate that the computation time and the storage requirement can be reduced significantly as compared to the CQM, by using the combined approach. Originality/value The combined methods can be successfully applied to the problems of long-time dynamic response, which requires a large amount of computer memory when CQM is applied, while preserving the CQM stability. If the number of time steps is high, then the accuracy of the proposed approach can be deteriorated because of the pseudo-force method.


2021 ◽  
Vol 3 (2) ◽  
pp. 1-15
Author(s):  
Norani Yanuar Subandi ◽  
Hablil Warid ◽  
Sulistyaningsih

The aim of this research were to describe the implementation of Using G - Suite Docs to Improve Students’ Writing Ability at SMA Negeri 1 Batuan, Sumenep and to find out  the achievement of student’s writing ability in Using G - Suite at SMA Negeri 1 Batuan, Sumenep. The approach used in this research was classroom action research. Data collection tools in this study were observation sheets of learning management through G-Suite Docs media, student activity observation sheets and tests. The objects of this study were 25 students of class XII IPA 1 SMA Negeri 1 Batuan even semester of the 2020/2021 school year. The research showed that the result of implementing of using G-Suite Docs showed that the students were more enthusiastic in writing discussion text and all students could respond to their group work by commenting on the process in writing. Moreover, the students achievement from the initial conditions up to second cycle. The average of initial condition was 66.6 changed to be 79.64 or increased 80% with the result of completeness reaching 92%.   Keywords: G - Suite Docs, Writing ability, Discussion Text


2021 ◽  
Author(s):  
Patrick Kuntze ◽  
Annette Miltenberger ◽  
Corinna Hoose ◽  
Michael Kunz

<p>Forecasting high impact weather events is a major challenge for numerical weather prediction. Initial condition uncertainty plays a major role but so potentially do uncertainties arising from the representation of physical processes, e.g. cloud microphysics. In this project, we investigate the impact of these uncertainties for the forecast of cloud properties, precipitation and hail of a selected severe convective storm over South-Eastern Germany.<br>To investigate the joint impact of initial condition and parametric uncertainty a large ensemble including perturbed initial conditions and systematic variations in several cloud microphysical parameters is conducted with the ICON model (at 1 km grid-spacing). The comparison of the baseline, unperturbed simulation to satellite, radiosonde, and radar data shows that the model reproduces the key features of the storm and its evolution. In particular also substantial hail precipitation at the surface is predicted. Here, we will present first results including the simulation set-up, the evaluation of the baseline simulation, and the variability of hail forecasts from the ensemble simulation.<br>In a later stage of the project we aim to assess the relative contribution of the introduced model variations to changes in the microphysical evolution of the storm and to the fore- cast uncertainty in larger-scale meteorological conditions.</p>


2021 ◽  
Author(s):  
Meng Zuo ◽  
Tianjun Zhou ◽  
Wenmin Man

<p>Both proxy data and climate modeling show divergent responses of global monsoon precipitation to volcanic eruptions. The reason is however unknown. Here, based on analysis of the CESM Last Millennium Ensemble simulation, we show evidences that the divergent responses are dominated by the pre-eruption background oceanic states. We found that under El Niño-Southern Oscillation (ENSO) neutral and warm phases initial conditions, the Pacific favors an El Niño-like anomaly after volcanic eruptions, while La Niña-like SST anomalies tend to occur following eruptions under ENSO cold phase initial condition, especially after southern eruptions. The cold initial condition is associated with stronger upper ocean temperature stratification and shallower thermocline over the eastern Pacific than normal. The easterly anomalies triggered by surface cooling over the tropical South America continent can generate changes in SST through anomalous advection and the ocean subsurface upwelling more efficiently, causing La Niña-like SST anomalies. Whereas under warm initial condition, the easterly anomalies fail to develop and the westerly anomalies still play a dominant role, thus forms an El Niño-like SST anomaly. Such SST response further regulates the monsoon precipitation changes through atmospheric teleconnection. The contribution of direct radiative forcing and indirect SST response to precipitation changes show regional differences, which will further affect the intensity and sign of precipitation response in submonsoon regions. Our results imply that attention should be paid to the background oceanic state when predicting the global monsoon precipitation responses to volcanic eruptions.</p>


2008 ◽  
Vol 19 (6) ◽  
pp. 701-715 ◽  
Author(s):  
JOANNA GOARD

It is generally believed that in order to solve initial value problems using Lie symmetry methods, the initial condition needs to be left invariant by the infinitesimal symmetry generator that admits the invariant solution. This is not so. In this paper we incorporate the imposed initial value as a side condition to find ‘infinitesimals’ from which solutions satisfying the initial value can be recovered, along with the corresponding symmetry generator.


2014 ◽  
Vol 1041 ◽  
pp. 293-296 ◽  
Author(s):  
Dušan Katunský ◽  
Marek Zozulák ◽  
Marián Vertaľ ◽  
Jozef Šimiček

Real dynamic boundary conditions and initial condition has to be taken into an account when simulations need to be done. The most helpful are in situ measurement facilities with climate monitoring. Indoor environment operation modes with different air temperature and relative humidity made indoor boundary conditions. Measured weather data are used to create complete boundary conditions for the research locality. Initial condition of masonry water profile is set up. The initial and boundary conditions are considered for an individual locality simulation proposes.


2014 ◽  
Vol 11 (S308) ◽  
pp. 119-120
Author(s):  
Takayuki Tatekawa ◽  
Shuntaro Mizuno

AbstractZel'dovich proposed Lagrangian perturbation theory (LPT) for structure formation in the Universe. After this, higher-order perturbative equations have been derived. Recently fourth-order LPT (4LPT) have been derived by two group. We have shown fifth-order LPT (5LPT) In this conference, we notice fourth- and more higher-order perturbative equations. In fourth-order perturbation, because of the difference in handling of spatial derivative, there are two groups of equations. Then we consider the initial conditions for cosmological N-body simulations. Crocce, Pueblas, and Scoccimarro (2007) noticed that second-order perturbation theory (2LPT) is required for accuracy of several percents. We verify the effect of 3LPT initial condition for the simulations. Finally we discuss the way of further improving approach and future applications of LPTs.


2017 ◽  
Vol 831 ◽  
pp. 779-825 ◽  
Author(s):  
Mohammad Mohaghar ◽  
John Carter ◽  
Benjamin Musci ◽  
David Reilly ◽  
Jacob McFarland ◽  
...  

The effect of initial conditions on transition to turbulence is studied in a variable-density shock-driven flow. Richtmyer–Meshkov instability (RMI) evolution of fluid interfaces with two different imposed initial perturbations is observed before and after interaction with a second shock reflected from the end wall of a shock tube (reshock). The first perturbation is a predominantly single-mode long-wavelength interface which is formed by inclining the entire tube to 80$^{\circ }$ relative to the horizontal, yielding an amplitude-to-wavelength ratio, $\unicode[STIX]{x1D702}/\unicode[STIX]{x1D706}=0.088$, and thus can be considered as half the wavelength of a triangular wave. The second interface is multi-mode, and contains additional shorter-wavelength perturbations due to the imposition of shear and buoyancy on the inclined perturbation of the first case. In both cases, the interface consists of a nitrogen-acetone mixture as the light gas over carbon dioxide as the heavy gas (Atwood number, $A\sim 0.22$) and the shock Mach number is $M\approx 1.55$. The initial condition was characterized through Proper Orthogonal Decomposition and density energy spectra from a large set of initial condition images. The evolving density and velocity fields are measured simultaneously using planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) techniques. Density, velocity, and density–velocity cross-statistics are calculated using ensemble averaging to investigate the effects of additional modes on the mixing and turbulence quantities. The density and velocity data show that a distinct memory of the initial conditions is maintained in the flow before interaction with reshock. After reshock, the influence of the long-wavelength inclined perturbation present in both initial conditions is still apparent, but the distinction between the two cases becomes less evident as smaller scales are present even in the single-mode case. Several methods are used to calculate the Reynolds number and turbulence length scales, which indicate a transition to a more turbulent state after reshock. Further evidence of transition to turbulence after reshock is observed in the velocity and density fluctuation spectra, where a scaling close to $k^{-5/3}$ is observed for almost one decade, and in the enstrophy fluctuation spectra, where a scaling close to $k^{1/3}$ is observed for a similar range. Also, based on normalized cross correlation spectra, local isotropy is reached at lower wave numbers in the multi-mode case compared with the single-mode case before reshock. By breakdown of large scales to small scales after reshock, rapid decay can be observed in cross-correlation spectra in both cases.


2017 ◽  
Vol 54 (1) ◽  
pp. 118-133 ◽  
Author(s):  
Mathieu Gerber ◽  
Nick Whiteley

AbstractWe establish conditions for an exponential rate of forgetting of the initial distribution of nonlinear filters in V-norm, allowing for unbounded test functions. The analysis is conducted in an general setup involving nonnegative kernels in a random environment which allows treatment of filters and prediction filters in a single framework. The main result is illustrated on two examples, the first showing that a total variation norm stability result obtained by Douc et al. (2009) can be extended to V-norm without any additional assumptions, the second concerning a situation in which forgetting of the initial condition holds in V-norm for the filters, but the V-norm of each prediction filter is infinite.


Sign in / Sign up

Export Citation Format

Share Document