scholarly journals Thermal fluctuations assist mechanical signal propagation in coiled-coil proteins

2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Judit Clopés ◽  
Jaeoh Shin ◽  
Marcus Jahnel ◽  
Stephan W. Grill ◽  
Vasily Zaburdaev
2020 ◽  
Author(s):  
Judit Clopés ◽  
Jaeoh Shin ◽  
Marcus Jahnel ◽  
Stephan W. Grill ◽  
Vasily Zaburdaev

Recently it has been shown that the long coiled-coil membrane tether protein Early Endosome Antigen 1 (EEA1) switches from a rigid to a flexible conformation upon binding of a signaling protein to its free end. This flexibility switch represents a novel motor-like activity, allowing EEA1 to generate a force that moves vesicles closer to the membrane they will fuse with. To elucidate how binding of a single signaling protein can globally change the stiffness of a 200 nm long chain, we propose a simplified description of the coiled-coil as a one-dimensional Frenkel-Kontorova chain. Using numerical simulations, we find that an initial perturbation of the chain can propagate along its whole length in the presence of thermal fluctuations, changing the configuration of the entire molecule and thereby affecting its stiffness. Our work sheds light onto intramolecular communication and force generation in long coiled-coil proteins.


2014 ◽  
Vol 107 (6) ◽  
pp. 1415-1425 ◽  
Author(s):  
Lee-Wei Yang ◽  
Akio Kitao ◽  
Bang-Chieh Huang ◽  
Nobuhiro Gō

2019 ◽  
Vol 476 (21) ◽  
pp. 3241-3260
Author(s):  
Sindhu Wisesa ◽  
Yasunori Yamamoto ◽  
Toshiaki Sakisaka

The tubular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions. Two classes of the conserved ER membrane proteins, atlastins and lunapark, have been shown to reside at the three-way junctions so far and be involved in the generation and stabilization of the three-way junctions. In this study, we report TMCC3 (transmembrane and coiled-coil domain family 3), a member of the TEX28 family, as another ER membrane protein that resides at the three-way junctions in mammalian cells. When the TEX28 family members were transfected into U2OS cells, TMCC3 specifically localized at the three-way junctions in the peripheral ER. TMCC3 bound to atlastins through the C-terminal transmembrane domains. A TMCC3 mutant lacking the N-terminal coiled-coil domain abolished localization to the three-way junctions, suggesting that TMCC3 localized independently of binding to atlastins. TMCC3 knockdown caused a decrease in the number of three-way junctions and expansion of ER sheets, leading to a reduction of the tubular ER network in U2OS cells. The TMCC3 knockdown phenotype was partially rescued by the overexpression of atlastin-2, suggesting that TMCC3 knockdown would decrease the activity of atlastins. These results indicate that TMCC3 localizes at the three-way junctions for the proper tubular ER network.


1997 ◽  
Vol 51 (2-3) ◽  
pp. 149-159
Author(s):  
K. M. Yemelyanov ◽  
Oleg Aleksandrovich Tretyakov ◽  
S. B. Nikitskiy
Keyword(s):  

2016 ◽  
pp. 3564-3575 ◽  
Author(s):  
Ara Sergey Avetisyan

The efficiency of virtual cross sections method and MELS (Magneto Elastic Layered Systems) hypotheses application is shown on model problem about distribution of wave field in thin surface layers of waveguide when plane wave signal is propagating in it. The impact of surface non-smoothness on characteristics of propagation of high-frequency horizontally polarized wave signal in isotropic elastic half-space is studied. It is shown that the non-smoothness leads to strong distortion of the wave signal over the waveguide thickness and along wave signal propagation direction as well.  Numerical comparative analysis of change in amplitude and phase characteristics of obtained wave fields against roughness of weakly inhomogeneous surface of homogeneous elastic half-space surface is done by classical method and by proposed approach for different kind of non-smoothness.


Author(s):  
Jim Vickers ◽  
Nader Pakdaman ◽  
Steven Kasapi

Abstract Dynamic hot-electron emission using time-resolved photon counting can address the long-term failure analysis and debug requirements of the semiconductor industry's advanced devices. This article identifies the detector performance parameters and components that are required to scale and keep pace with the industry's requirements. It addresses the scalability of dynamic emission with the semiconductor advanced device roadmap. It is important to understand the limitations to determining that a switching event has occurred. The article explains the criteria for event detection, which is suitable for tracking signal propagation and looking for logic or other faults in which timing is not critical. It discusses conditions for event timing, whose goal is to determine accurately when a switching event has occurred, usually for speed path analysis. One of the uses of a dynamic emission system is to identify faults by studying the emission as a general function of time.


Sign in / Sign up

Export Citation Format

Share Document