scholarly journals Linking space-time correlations for a class of self-organized critical systems

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Naveen Kumar ◽  
Suram Singh ◽  
Avinash Chand Yadav
Genetics ◽  
1993 ◽  
Vol 133 (3) ◽  
pp. 711-727
Author(s):  
B K Epperson

Abstract The geographic distribution of genetic variation is an important theoretical and experimental component of population genetics. Previous characterizations of genetic structure of populations have used measures of spatial variance and spatial correlations. Yet a full understanding of the causes and consequences of spatial structure requires complete characterization of the underlying space-time system. This paper examines important interactions between processes and spatial structure in systems of subpopulations with migration and drift, by analyzing correlations of gene frequencies over space and time. We develop methods for studying important features of the complete set of space-time correlations of gene frequencies for the first time in population genetics. These methods also provide a new alternative for studying the purely spatial correlations and the variance, for models with general spatial dimensionalities and migration patterns. These results are obtained by employing theorems, previously unused in population genetics, for space-time autoregressive (STAR) stochastic spatial time series. We include results on systems with subpopulation interactions that have time delay lags (temporal orders) greater than one. We use the space-time correlation structure to develop novel estimators for migration rates that are based on space-time data (samples collected over space and time) rather than on purely spatial data, for real systems. We examine the space-time and spatial correlations for some specific stepping stone migration models. One focus is on the effects of anisotropic migration rates. Partial space-time correlation coefficients can be used for identifying migration patterns. Using STAR models, the spatial, space-time, and partial space-time correlations together provide a framework with an unprecedented level of detail for characterizing, predicting and contrasting space-time theoretical distributions of gene frequencies, and for identifying features such as the pattern of migration and estimating migration rates in experimental studies of genetic variation over space and time.


2004 ◽  
Vol 16 (11) ◽  
pp. 3859-3867 ◽  
Author(s):  
Guo-Wei He ◽  
Meng Wang ◽  
Sanjiva K. Lele

2007 ◽  
Vol 373 ◽  
pp. 215-230 ◽  
Author(s):  
Ryan Woodard ◽  
David E. Newman ◽  
Raúl Sánchez ◽  
Benjamin A. Carreras

2004 ◽  
Vol 15 (09) ◽  
pp. 1249-1268 ◽  
Author(s):  
DENIS HORVÁTH ◽  
MARTIN GMITRA

Self-organized Monte Carlo simulations of 2D Ising ferromagnet on the square lattice are performed. The essence of the suggested simulation method is an artificial dynamics consisting of the well-known single-spin-flip Metropolis algorithm supplemented by a random walk on the temperature axis. The walk is biased towards the critical region through a feedback based on instantaneous energy and magnetization cumulants, which are updated at every Monte Carlo step and filtered through a special recursion algorithm. The simulations revealed the invariance of the temperature probability distribution function, once some self-organized critical steady regime is reached, which is called here noncanonical equilibrium. The mean value of this distribution approximates the pseudocritical temperature of canonical equilibrium. In order to suppress finite-size effects, the self-organized approach is extended to multi-lattice systems, where the feedback basis on pairs of instantaneous estimates of the fourth-order magnetization cumulant on two systems of different size. These replica-based simulations resemble, in Monte Carlo lattice systems, some of the invariant statistical distributions of standard self-organized critical systems.


Sign in / Sign up

Export Citation Format

Share Document