Neutron scattering from aerosols: Intraparticle structure factor, Guinier analysis of particle speed, and crossed beam kinematics

2000 ◽  
Vol 61 (1) ◽  
pp. 557-564 ◽  
Author(s):  
Gerald Wilemski
1989 ◽  
Vol 166 ◽  
Author(s):  
P. Wiltzius ◽  
S. B. Dierker

ABSTRACTWe present small angle neutron scattering data of porous glasses. Analysis of the structure factor shows that the morphology on length scales between 30 A and 800 A depends on fabrication procedures. Fast gelation leads to a clumpy glass, whereas slow gelation produces a random smooth internal interface.


Langmuir ◽  
1989 ◽  
Vol 5 (2) ◽  
pp. 422-428 ◽  
Author(s):  
C. G. De Kruif ◽  
P. W. Rouw ◽  
W. J. Briels ◽  
M. H. G. Duits ◽  
A. Vrij ◽  
...  

2003 ◽  
Vol 36 (2) ◽  
pp. 147-227 ◽  
Author(s):  
Michel H. J. Koch ◽  
Patrice Vachette ◽  
Dmitri I. Svergun

1. Introduction 1482. Basics of X-ray and neutron scattering 1492.1 Elastic scattering of electromagnetic radiation by a single electron 1492.2 Scattering by assemblies of electrons 1512.3 Anomalous scattering and long wavelengths 1532.4 Neutron scattering 1532.5 Transmission and attenuation 1553. Small-angle scattering from solutions 1563.1 Instrumentation 1563.2 The experimental scattering pattern 1573.3 Basic scattering functions 1593.4 Global structural parameters 1613.4.1 Monodisperse systems 1613.4.2 Polydisperse systems and mixtures 1633.5 Characteristic functions 1644. Modelling 1664.1 Spherical harmonics 1664.2 Shannon sampling 1694.3 Shape determination 1704.3.1 Modelling with few parameters: molecular envelopes 1714.3.2 Modelling with many parameters: bead models 1734.4 Modelling domain structure and missing parts of high-resolution models 1784.5 Computing scattering patterns from atomic models 1844.6 Rigid-body refinement 1875. Applications 1905.1 Contrast variation studies of ribosomes 1905.2 Structural changes and catalytic activity of the allosteric enzyme ATCase 1916. Interactions between molecules in solution 2036.1 Linearizing the problem for moderate interactions: the second virial coefficient 2046.2 Determination of the structure factor 2057. Time-resolved measurements 2118. Conclusions 2159. Acknowledgements 21610. References 216A self-contained presentation of the main concepts and methods for interpretation of X-ray and neutron-scattering patterns of biological macromolecules in solution, including a reminder of the basics of X-ray and neutron scattering and a brief overview of relevant aspects of modern instrumentation, is given. For monodisperse solutions the experimental data yield the scattering intensity of the macromolecules, which depends on the contrast between the solvent and the particles as well as on their shape and internal scattering density fluctuations, and the structure factor, which is related to the interactions between macromolecules. After a brief analysis of the information content of the scattering intensity, the two main approaches for modelling the shape and/or structure of macromolecules and the global minimization schemes used in the calculations are presented. The first approach is based, in its more advanced version, on the spherical harmonics approximation and relies on few parameters, whereas the second one uses bead models with thousands of parameters. Extensions of bead modelling can be used to model domain structure and missing parts in high-resolution structures. Methods for computing the scattering patterns from atomic models including the contribution of the hydration shell are discussed and examples are given, which also illustrate that significant differences sometimes exist between crystal and solution structures. These differences are in some cases explainable in terms of rigid-body motions of parts of the structures. Results of two extensive studies – on ribosomes and on the allosteric protein aspartate transcarbamoylase – illustrate the application of the various methods. The unique bridge between equilibrium structures and thermodynamic or kinetic aspects provided by scattering techniques is illustrated by modelling of intermolecular interactions, including crystallization, based on an analysis of the structure factor and recent time-resolved work on assembly and protein folding.


1978 ◽  
Vol 56 (2) ◽  
pp. 302-310 ◽  
Author(s):  
A. D. B. Woods ◽  
E. C. Svensson ◽  
P. Martel

Tables of values of the resolution-broadened dynamic structure factor, SR(Q,v), for liquid 4He at 4.2 K and saturated vapor pressure are presented. The results are discussed in terms of several models. No existing model is able to give an adequate description over the entire range covered by the measurements, 1.0 ≤ Q ≤ 100 nm−1.


Author(s):  
Thanh Nguyen ◽  
Yoichiro Tsurimaki ◽  
Ricardo Pablo-Pedro ◽  
Grigory Bednik ◽  
Tongtong Liu ◽  
...  

Abstract Topological nodal semimetals are known to host a variety of fascinating electronic properties due to the topological protection of the band-touching nodes. Neutron scattering, despite its power in probing elementary excitations, has not been routinely applied to topological semimetals, mainly due to the lack of an explicit connection between the neutron response and the signature of topology. In this work, we theoretically investigate the role that neutron scattering can play to unveil the topological nodal features: a large magnetic neutron response with spectral non-analyticity can be generated solely from the nodal bands. A new formula for the dynamical structure factor for generic topological nodal metals is derived. For Weyl semimetals, we show that the locations of Weyl nodes, the Fermi velocities and the signature of chiral anomaly can all leave hallmark neutron spectral responses. Our work offers a neutron-based avenue towards probing bulk topological materials.


2009 ◽  
Vol 42 (2) ◽  
pp. 323-325 ◽  
Author(s):  
Armin Hoell ◽  
Dragomir Tatchev ◽  
Sylvio Haas ◽  
Jörg Haug ◽  
Peter Boesecke

A comparison between the resonant scattering curve obtained by anomalous small-angle X-ray scattering at the X-ray absorption edge of Ni and the complementary small-angle neutron scattering curve from an Al89Ni6La5alloy sample is reported. The sample does not comply with the two-phase approximation. The two resulting scattering curves are approximately proportional to each other in this particular case. The anomalous small-angle X-ray scattering resonant curve at the Ni absorption edge equals the Ni–Ni partial structure factor and, owing to the favourable neutron scattering lengths of Ni, La and Al, the neutron scattering curve is also proportional to that partial structure factor.


Sign in / Sign up

Export Citation Format

Share Document