Transition from two-dimensional to three-dimensional behavior in the self-assembly of magnetorheological fluids confined in thin slits

2007 ◽  
Vol 75 (6) ◽  
Author(s):  
Ramin Haghgooie ◽  
Patrick S. Doyle
NANO ◽  
2009 ◽  
Vol 04 (01) ◽  
pp. 1-5 ◽  
Author(s):  
JAIHAI WANG ◽  
MIRA PATEL ◽  
DAVID H. GRACIAS

We describe a strategy to construct three-dimensional (3D) containers with nanoporous walls by the self-assembly of lithographically patterned two-dimensional cruciforms with solder hinges. The first step involves fabricating two-dimensional (2D) cruciforms composed of six unlinked patterns: each pattern has an open window. The second step entails photolithographic patterning of solder hinges that connect the cruciform. The third step involves the deposition of polystyrene particles within the windows and the subsequent electrodeposition of metal in the voids between the polystyrene particles. Following the dissolution of the particles, the cruciforms are released from the substrate and heated above the melting point of the solder causing the cruciforms to spontaneously fold up into 3D cubic containers with nanoporous walls. We believe these 3D containers with nanoporous side walls are promising for molecular separations and cell-based therapies.


2020 ◽  
Vol 7 (3) ◽  
pp. 115
Author(s):  
Patrick Bédard ◽  
Sara Gauvin ◽  
Karel Ferland ◽  
Christophe Caneparo ◽  
Ève Pellerin ◽  
...  

Animal testing has long been used in science to study complex biological phenomena that cannot be investigated using two-dimensional cell cultures in plastic dishes. With time, it appeared that more differences could exist between animal models and even more when translated to human patients. Innovative models became essential to develop more accurate knowledge. Tissue engineering provides some of those models, but it mostly relies on the use of prefabricated scaffolds on which cells are seeded. The self-assembly protocol has recently produced organ-specific human-derived three-dimensional models without the need for exogenous material. This strategy will help to achieve the 3R principles.


2017 ◽  
Vol 73 (7) ◽  
pp. 541-545
Author(s):  
Hua Xie ◽  
Wang-Jian Fang ◽  
Xiao-Qiang Yao

One of the most interesting phenomena in coordination polymers (CPs) is the co-existence of different interlaced motifs. However, CPs having two different interlaced motifs at the same time are still rare. Colourless block-shaped crystals of the two-dimensional polymer poly[[aqua(μ2-naphthalene-2,6-dicarboxylato){μ2-4,4′-[oxybis(4,1-phenylene)]dipyridine}cadmium(II)] monohydrate], {[Cd(C12H6O4)(C22H16N2O)(H2O)]·H2O} n , (I), was synthesized under hydrothermal conditions by the self-assembly of 4,4′-[oxybis(4,1-phenylene)]dipyridine (OPY) with CdII in the presence of naphthalene-2,6-dicarboxylic acid (H2ndc). Each CdII ion is six-coordinated by two N atoms from the pyridine rings of two OPY ligands and by four O atoms, three of which are from two ndc2− ligands and one of which is from a water molecule. In (I), every two identical two-dimensional (2D) 63 layers are interpenetrated in a parallel fashion, resulting in an interesting 2D→2D framework with both polyrotaxane and polycatenane characteristics. The extension of these sheets into a three-dimensional supramolecular net is via O—H...O hydrogen bonds. The solid-state photoluminescence properties of (I) are also discussed.


MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3507-3520
Author(s):  
Chunhui Dai ◽  
Kriti Agarwal ◽  
Jeong-Hyun Cho

AbstractNanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.


2015 ◽  
Vol 3 (4) ◽  
pp. 1540-1548 ◽  
Author(s):  
Sheng Zhu ◽  
Hui Zhang ◽  
Ping Chen ◽  
Lin-Hui Nie ◽  
Chuan-Hao Li ◽  
...  

A facile protocol for the self-assembly of the rGO/β-MnO2 hybrid hydrogel with ultrafine structure and precise control of mass-loading for high performance supercapacitors is reported.


2009 ◽  
Vol 65 (3) ◽  
pp. m139-m142 ◽  
Author(s):  
Rajesh Koner ◽  
Israel Goldberg

The title compound, (5,10,15,20-tetra-4-pyridylporphyrinato)zinc(II) 1,2-dichlorobenzene disolvate, [Zn(C40H24N8)]·2C6H4Cl2, contains a clathrate-type structure. It is composed of two-dimensional square-grid coordination networks of the self-assembled porphyrin moiety, which are stacked one on top of the other in a parallel manner. The interporphyrin cavities of the overlapping networks combine into channel voids accommodated by the dichlorobenzene solvent. Molecules of the porphyrin complex are located on crystallographic inversion centres. The observed two-dimensional assembly mode of the porphyrin units represents a supramolecular isomer of the unique three-dimensional coordination frameworks of the same porphyrin building block observed earlier. The significance of this study lies in the discovery of an additional supramolecular isomer of the rarely observed structures of metalloporphyrins self-assembled directly into extended coordination polymers without the use of external ligand or metal ion auxiliaries.


Nano Letters ◽  
2011 ◽  
Vol 11 (6) ◽  
pp. 2533-2537 ◽  
Author(s):  
C.-H. Chang ◽  
L. Tian ◽  
W. R. Hesse ◽  
H. Gao ◽  
H. J. Choi ◽  
...  

2020 ◽  
Vol 52 (8) ◽  
pp. 923-930 ◽  
Author(s):  
Hanae Arakawa ◽  
Kumi Takeda ◽  
Sayuri L. Higashi ◽  
Aya Shibata ◽  
Yoshiaki Kitamura ◽  
...  

AbstractVarious biofunctional hydrogel materials can be fabricated in aqueous media through the self-assembly of peptide derivatives, forming supramolecular nanostructures and their three-dimensional networks. In this study, we describe the self-assembly of new Fmoc-dipeptides comprising α-methyl-L-phenylalanine. We found that the position and number of methyl groups introduced onto the α carbons of the Fmoc-dipeptides by α-methyl-L-phenylalanine have a marked influence on the morphology of the supramolecular nanostructure as well as the hydrogel (network) formation ability.


2018 ◽  
Vol 74 (8) ◽  
pp. 894-900 ◽  
Author(s):  
Lin Wang ◽  
Qian-Kun Zhou ◽  
Yun Xu ◽  
Ni-Ya Li

In recent years, the design and construction of crystalline coordination complexes by the assembly of metal ions with multitopic ligands have attracted considerable attention because of the unique architectures and potential applications of these compounds. Two new coordination polymers, namely poly[[μ-trans-1-(2-aminopyridin-3-yl)-2-(pyridin-4-yl)ethene-κ2 N:N′](μ3-5-methylisophthalato-κ4 O 1,O 1′:O 3:O 3′)cadmium(II)], [Cd(C9H6O4)(C12H11N3)] n or [Cd(5-Me-ip)(2-NH2-3,4-bpe)] n , (I), and poly[[μ-trans-1-(2-aminopyridin-3-yl)-2-(pyridin-4-yl)ethene-κ2 N:N′](μ2-5-hydroxyisophthalato-κ4 O 1,O 1′:O 3:O 5)cadmium(II)], [Cd(C8H4O5)(C12H11N3)] n or [Cd(5-HO-ip)(2-NH2-3,4-bpe)] n , (II), have been prepared hydrothermally by the self-assembly of Cd(NO3)2·4H2O and trans-1-(2-aminopyridin-3-yl)-2-(pyridin-4-yl)ethene (2-NH2-3,4-bpe) with two similar dicarboxylic acids, i.e. 5-methylisophthalic acid (5-Me-H2ip) and 5-hydroxyisophthalic acid (5-HO-H2ip). The coordination network of (I) is a two-dimensional sql net parallel to (101). Adjacent sql nets are further linked to form a three-dimensional supramolecular framework via hydrogen-bonding interactions. Compound (II) is a two-dimensional (3,5)-connected coordination network parallel to (010) with the point symbol (63)(55647). As the other reactants and reaction conditions are the same, the structural differences between (I) and (II) are undoubtedly determined by the different substituent groups in the 5-position of isophthalic acid. Both (I) and (II) exhibit good thermal stabilities and photoluminescence properties.


Sign in / Sign up

Export Citation Format

Share Document