Extended forms of the second law for general time-dependent stochastic processes

2009 ◽  
Vol 80 (2) ◽  
Author(s):  
Hao Ge
1993 ◽  
Vol 07 (28) ◽  
pp. 4827-4840 ◽  
Author(s):  
DONALD H. KOBE ◽  
JIONGMING ZHU

The most general time-dependent Hamiltonian for a harmonic oscillator is both linear and quadratic in the coordinate and the canonical momentum. It describes in general a harmonic oscillator with mass, spring “constant,” and friction (or antifriction) “constant,” all of which are time dependent, that is acted on by a time-dependent force. A generalized Hannay angle, which is gauge invariant, is defined by making a distinction between the Hamiltonian and the energy. The generalized Hannay angle is the classical counterpart of the generalized Berry phase in quantum theory. When friction is present the generalized Hannay angle is nonzero. If the Hamiltonian is (incorrectly) chosen to be the energy, the generalized Hannay angle is different. Nevertheless, in the adiabatic case the same total angle is obtained.


2014 ◽  
Vol 900 ◽  
pp. 753-756 ◽  
Author(s):  
You Guo Li

In this paper the nonlinear transversal vibration of axially moving yarn with time-dependent tension is investigated. Yarn material is modeled as Kelvin element. A partial differential equation governing the transversal vibration is derived from Newtons second law. Galerkin method is used to truncate the governing nonlinear differential equation, and thus first-order ordinary differential equation is obtained. The periodic vibration equation and the natural frequency of moving yarn are received by applying homotopy perturbation method. As a result, the condition which should be avoided in the weaving process for resonance is obtained.


2017 ◽  
Author(s):  
M. Victoria Carpio-Bernido ◽  
Wilson I. Barredo ◽  
Christopher C. Bernido

2018 ◽  
Vol 18 (8) ◽  
pp. 04018088 ◽  
Author(s):  
Abdoreza Fazeli ◽  
Amin Keshavarz ◽  
Mohammadhossein Moradi

1997 ◽  
Vol 4 (4) ◽  
pp. 223-235 ◽  
Author(s):  
G. Haller ◽  
A. C. Poje

Abstract. We study the relation between changes in the Eulerian topology of a two dimensional flow and the mixing of fluid particles between qualitatively different regions of the flow. In general time dependent flows, streamlines and particle paths are unrelated. However, for many mesoscale oceanographic features such as detaching rings and meandering jets, the rate at which the Euierian structures evolve is considerably slower than typical advection speeds of Lagrangian tracers. In this note we show that for two-dimensional, adiabatic fluid flows there is a direct relationship between observable changes in the topology of the Eulerian field and the rate of transport of fluid particles. We show that a certain class of flows is amenable to adiabatic or near adiabatic analysis, and, as an example, we use our results to study the chaotic mixing in the Dutkiewicz and Paldor (1994) kinematic model of the interaction of a meandering barotropic jet with a strong eddy.


2003 ◽  
Vol 81 (10) ◽  
pp. 1185-1191
Author(s):  
J -Q Shen ◽  
P Chen ◽  
H Mao

The present paper finds the complete set of exact solutions of the general time-dependent dynamical models for quantum decoherence, by making use of the Lewis–Riesenfeld invariant theory and the invariant-related unitary transformation formulation. Based on this, the general explicit expression for the decoherence factor is then obtained and the adiabatic classical limit of an illustrative example is discussed. The result (i.e., the adiabatic classical limit) obtained in this paper is consistent with what is obtained by other authors, and furthermore we obtain more general results concerning time-dependent nonadiabatic quantum decoherence. It is shown that the invariant theory is appropriate for treating both the time-dependent quantum decoherence and the geometric phase factor. PACS Nos.: 03.65.Ge, 03.65.Bz


1994 ◽  
Vol 08 (11n12) ◽  
pp. 1563-1576 ◽  
Author(s):  
S.S. MIZRAHI ◽  
M.H.Y. MOUSSA ◽  
B. BASEIA

We consider the most general Time-Dependent (TD) quadratic Hamiltonian written in terms of the bosonic operators a and a+, which may represent either a charged particle subjected to a harmonic motion, immersed in a TD uniform magnetic field, or a single mode photon field going through a squeezing medium. We solve the TD Schrödinger equation by a method that uses, sequentially, a TD unitary transformation and the diagonalization of a TD invariant, and we verify that the exact solution is a complete set of TD states. We also obtain the evolution operator which is essential to express operators in the Heisenberg picture. The variances of the quadratures are calculated and a phase space of parameters introduced, in which we identify squeezing regions. The results for some special cases are presented and as an illustrative example the parametric oscillator is revisited and the trajectories in phase space drawn.


Sign in / Sign up

Export Citation Format

Share Document