scholarly journals Full expectation-value statistics for randomly sampled pure states in high-dimensional quantum systems

2019 ◽  
Vol 99 (1) ◽  
Author(s):  
Peter Reimann ◽  
Jochen Gemmer
2017 ◽  
Vol 96 (2) ◽  
Author(s):  
Lixiang Chen ◽  
Wuhong Zhang ◽  
Ziwen Wu ◽  
Jikang Wang ◽  
Robert Fickler ◽  
...  

2001 ◽  
Vol 56 (1-2) ◽  
pp. 124-127
Author(s):  
Ph. Blanchard ◽  
R. Olkiewicz

AbstractWe discuss the properties of decoherence and its role in the appearance of classical properties in open quantum systems. In particular, it is used for classification of pure states with respect to their ability to persist despite the environmental monitoring.


2019 ◽  
Vol 177 (4) ◽  
pp. 717-726 ◽  
Author(s):  
Haruki Watanabe

Abstract The Bloch theorem is a powerful theorem stating that the expectation value of the U(1) current operator averaged over the entire space vanishes in large quantum systems. The theorem applies to the ground state and to the thermal equilibrium at a finite temperature, irrespective of the details of the Hamiltonian as far as all terms in the Hamiltonian are finite ranged. In this work we present a simple yet rigorous proof for general lattice models. For large but finite systems, we find that both the discussion and the conclusion are sensitive to the boundary condition one assumes: under the periodic boundary condition, one can only prove that the current expectation value is inversely proportional to the linear dimension of the system, while the current expectation value completely vanishes before taking the thermodynamic limit when the open boundary condition is imposed. We also provide simple tight-binding models that clarify the limitation of the theorem in dimensions higher than one.


Author(s):  
Mevludin Licina

Dynamical high-dimensional quantum states can be tracked and manipulated in many cases. Using a new theoretical framework approach of manipulating quantum systems, we will show how one can manipulate and introduce parameters that allow tracking and descriptive insight in the dynamics of states. Using quantum topology and other novel mathematical representations, we will show how quantum states behave in critical points when the shift of probability distribution introduces changes.


2013 ◽  
Vol 27 (21) ◽  
pp. 1350151
Author(s):  
YU GUO

By establishing CHSH operators and CHSH-type inequalities, we show that any entangled pure state in infinite-dimensional systems is entangled in a 2⊗2 subspace. We find that, for infinite-dimensional systems, the corresponding properties are similar to that of the two-qubit case: (i) The CHSH-type inequalities provide a sufficient and necessary condition for separability of pure states; (ii) The CHSH operators satisfy the Cirel'son inequalities; (iii) Any state which violates one of these Bell inequalities is distillable.


2006 ◽  
Vol 20 (01) ◽  
pp. 1-23 ◽  
Author(s):  
LEONARDO NEVES ◽  
G. LIMA ◽  
J. G. AGUIRRE GÓMEZ ◽  
C. H. MONKEN ◽  
C. SAAVEDRA ◽  
...  

We review recent theoretical and experimental works where are proposed and demonstrated how to use photon pairs created by spontaneous parametric down-conversion to generate entangled states of D-dimensional quantum systems, or qudits. This is the first demonstration of high-dimensional entanglement based on the intrinsic transverse momentum entanglement of the type-II down-converted photons. The qudit space is defined by an aperture made up of an opaque screen with D slits (paths), placed in the arms of the twin photons. By manipulating the pump beam profile we can prepare different entangled states of these possible paths. We focus our attention on an important case for applications in quantum information: the maximally entangled states. Experimental results for qudits with D=4 and D=8 are shown and measuring a two-photon conditional interference, we also demonstrate the nonclassical character of the correlations.


Sign in / Sign up

Export Citation Format

Share Document