An Experimental and Analytical Investigation of Rectangular Synthetic Jets

2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Gopi Krishnan ◽  
Kamran Mohseni

In this paper the flow field of a rectangular synthetic jet driven by a piezoelectric membrane issuing into a quiescent environment is studied. The similarities exhibited by synthetic and continuous turbulent jets lead to the hypothesis that a rectangular synthetic jet within a limited region downstream of the orifice be modeled using similarity analysis just as a continuous planar jet. Accordingly, the jet is modeled using the classic two-dimensional solution to a continuous jet, where the virtual viscosity coefficient of the continuous turbulent jet is replaced with that measured for a synthetic jet. The virtual viscosity of the synthetic jet at a particular axial location is related to the spreading rate and velocity decay rate of the jet. Hot-wire anemometry is used to characterize the flow downstream of the orifice. The flow field of rectangular synthetic jets is thought to consist of four regions as distinguished by the centerline velocity decay. The regions are the developing, the quasi-two-dimensional, the transitional, and the axisymmetric regions. It is in the quasi-two-dimensional region that the planar model applies, and where indeed the jet exhibits self-similar behavior as distinguished by the collapse of the lateral time average velocity profiles when scaled. Furthermore, within this region the spanwise velocity profiles display a saddleback profile that is attributed to the secondary flow generated at the smaller edges of the rectangular orifice. The scaled spreading and decay rates are seen to increase with stroke ratio and be independent of Reynolds number. However, the geometry of the actuator is seen to additionally affect the external characteristics of the jet. The eddy viscosities of the synthetic jets under consideration are shown to be larger than equivalent continuous turbulent jets. This enhanced eddy viscosity is attributed to the additional mixing brought about by the introduction of the periodic vortical structures in synthetic jets and their ensuing break down and transition to turbulence. Further, a semi-empirical modeling approach is proposed, the final objective of which is to obtain a functional relationship between the parameters that describe the external flow field of the synthetic jet and the input operational parameters to the system.

Volume 4 ◽  
2004 ◽  
Author(s):  
Jivtesh Garg ◽  
Mehmet Arik ◽  
Stanton Weaver ◽  
Seyed Saddoughi

Micro fluidics devices are conventionally used for boundary layer control in many aerospace applications. Synthetic Jets are intense small scale turbulent jets formed from entrainment and expulsion of the fluid in which they are embedded. The idea of using synthetic jets in confined electronic cooling applications started in late 1990s. These micro fluidic devices offer very efficient, high magnitude direct air-cooling on the heated surface. A proprietary synthetic jet designed in General Electric Company was able to provide a maximum air velocity of 90 m/s from a 1.2 mm hydraulic diameter rectangular orifice. An experimental study for determining the thermal performance of a meso scale synthetic jet was carried out. The synthetic jets are driven by a time harmonic signal. During the experiments, the operating frequency for jets was set between 3 and 4.5 kHz. The resonance frequency for a particular jet was determined through the effect on the exit velocity magnitude. An infrared thermal imaging technique was used to acquire fine scale temperature measurements. A square heater with a surface area of 156 mm2 was used to mimic the hot component and extensive temperature maps were obtained. The parameters varied during the experiments were jet location, driving jet voltage, driving jet frequency and heater power. The output parameters were point wise temperatures (pixel size = 30 μm), and heat transfer enhancement over natural convection. A maximum of approximately 8 times enhancement over natural convection heat transfer was measured. The maximum coefficient of cooling performance obtained was approximately 6.6 due to the low power consumption of the synthetic jets.


Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 185
Author(s):  
Zuzana Antošová ◽  
Zdeněk Trávníček

This paper deals with active control of a continuous jet issuing from a long pipe nozzle by means of a concentrically placed annular synthetic jet. The experiments in air cover regimes of laminar, transitional, and turbulent main jet flows (Reynolds number ranges 1082–5181). The velocity profiles (time-mean and fluctuation components) of unforced and forced jets were measured using hot-wire anemometry. Six flow regimes are distinguished, and their parameter map is proposed. The possibility of turbulence reduction by forcing in transitional jets is demonstrated, and the maximal effect is revealed at Re = 2555, where the ratio of the turbulence intensities of the forced and unforced jets is decreased up to 0.45.


Author(s):  
Gopi Krishnan ◽  
Kamran Mohseni

The flow field of a rectangular synthetic jet is studied in this paper. It is known that synthetic jets exhibit similarities to continuous turbulent jets in that the far field velocity profile of synthetic jets displays self-similar behavior as well. In this paper we systematically model the a rectangular synthetic jet by applying the argument that synthetic jets can be described by the same equations used to describe continuous laminar jets, with the replacement of the kinematic viscosity of laminar flow, with the virtual kinematic viscosity obtained from the experiments on a synthetic jet. The virtual kinematic viscosity is obtained through experimental measurements of the time average velocity profiles using hot wire anemometry. The virtual kinematic viscosity of the synthetic jet under study was found to exceed that of a turbulent jet of equivalent momentum. The inherent periodic excitation of the synthetic is attributed to the increased virtual kinematic viscosity, which results in the faster spreading and increased entrainment observed in experiments. It is observed that the variation in the centerline velocity and jet width with axial distance, for various actuator stroke lengths collapse onto single curves when scaled appropriately.


2019 ◽  
Vol 91 (4) ◽  
pp. 575-581 ◽  
Author(s):  
Chi-Yu Lin ◽  
Jih Lung Lin

Purpose This paper aims to experimentally study the external flow characteristic of an isolated two-dimensional synthetic jet actuator undergoing diaphragm resonance. Design/methodology/approach The resonance frequency of the diaphragm (40 Hz) depends on the excitation mechanism in the actuator, whereas it is independent of cavity geometry, excitation waveform and excitation voltage. The velocity response of the synthetic jet is influenced by excitation voltage rather than excitation waveform. Thus, this investigation selected four different voltages (5, 10, 15 and 20 V) under the same sine waveform as experiment parameters. Findings The velocity field along the downstream direction is classified into five regions, which can be obtained by hot-wire measurement. The first region refers to an area in which flow moves from within the cavity to the exit of orifice through the oscillation of the diaphragm, but prior to the formation of the vortex of a synthetic jet. In this region, two characteristic frequencies exist at 20 and 40 Hz in the flow field. The second region refers to the area in which the vortices of a synthetic jet fully develop following their initial formation. In this region, the characteristic frequencies at 20 and 40 Hz still occur in the flow field. The third region refers to the area in which both fully developed vortices continue traveling downstream. It is difficult to obtain the characteristic frequency in this flow field, because the mean center velocities (ū) decay downstream and are proportional to (x/w)−1/2 for the four excitation voltages. The fourth region reveals variations in both vortices as they merge into a single vortex. The mean center velocities (ū) are approximately proportional to (x/w)0 in this region for the four excitation voltages. A fifth region deals with variations in the vortex of a synthetic jet after both vortices merge into one, in which the mean center velocities (ū) are approximately proportional to (x/w)−1 in this region for the four excitation voltages (x/w is the dimensionless streamwise distance). Originality/value Although the flow characteristics of synthetic jets had reported for flow control in some literatures, variations of flow structure for synthetic jets are still not studied under the excitation of diaphragm resonance. This paper showed some novel results that our velocity response results obtained by hot-wire measurement along the downstream direction compared with flow visualization resulted in the classification of five regions under the excitation of diaphragm resonance. In the future, it makes valuable contributions for experimental findings to provide researchers with further development of flow control.


1990 ◽  
Vol 27 (04) ◽  
pp. 250-256
Author(s):  
Stuart Wilkinson

An experimental aerodynamic boundary-layer investigation is performed over the suction surfaces of a typical two-dimensional mast/sail geometry. Velocity profiles are obtained at a number of locations which, together with visualization data and the corresponding static pressure distribution, are used to describe the fundamental nature of the complex partially separated flow field associated with such geometries. The velocity profiles are fully analyzed to provide thickness parameters and skin friction coefficients, suitable for use as representative data in the development of predictive theories involving viscid-inviscid interactions. The chordwise variations of the thickness parameters are graphically presented and discussed.


Author(s):  
Djavad Kamari ◽  
Mehran Tadjfar

Synthetic jet crossing the boundary layer has been widely implemented on the airfoil’s top surface to control the flow field. Introducing a genetic algorithm coupled with artificial neural network (ANN) was used in this study to find optimum values for design parameters. Optimization was done for SD7003 airfoil at Reynolds number of 60,000 and angles of attack of 13° and 16°. URANS equations were employed to solve the flow field and k–ω SST was used as the turbulence model. The synthetic jets were implemented tangential to boundary layer (TBL). It was found that at optimum values of design parameters a significant improvement in aerodynamic coefficients by increasing lift and reducing drag can be achieved. Drag force reduction was achieved by reducing pressure drag at post stall and a significant reduction of separation zone.


Author(s):  
Farzad Bazdidi-Tehrani ◽  
Mohammad Hatami ◽  
Ahmad Abouata

The present work provides the computations of unsteady 3D synthetic jet ejected into a quiescent ambient. The [Formula: see text] turbulence model is employed for numerical simulations of flow field and the problem is considered under incompressible and axisymmetric assumptions. The pressure-implicit with splitting of operators algorithm is used for coupling of continuity and momentum equations. In order to accurately simulate the synthetic jet actuator, the dynamic mesh method is employed to model the flow field. In different simulations, pressure inlet, pressure outlet and wall boundary conditions at the orifice outlet of the synthetic jet are investigated. Changes in the boundary conditions at the orifice outlet affect the flow field such that mean velocity magnitude is higher for unconfined synthetic jets than confined ones. Moreover, form of vortex rings is dissimilar for confined and unconfined jets. Also, the actuator is modelled with two types of inlet boundary conditions, namely, moving piston and moving diaphragm boundaries. Results show that they have no significant difference and can be used interchangeably.


Author(s):  
Rayhaan Farrelly ◽  
Alan McGuinn ◽  
Tim Persoons ◽  
Darina Murray

Impinging synthetic jets are considered as a potential solution for convective cooling, in applications that match their main characteristics (high local heat transfer rates, zero net mass flux, scalability, active control). Nevertheless the understanding of heat transfer to synthetic jets falls short of that available for steady jets. To address this, this paper uses detailed flow field measurements to help identify the main heat transfer mechanisms in impinging synthetic jets. Local heat transfer measurements have been performed for an impinging round synthetic jet at a range of Reynolds numbers between 1000 and 3000, nozzle to plate spacings between 4D and 16D and stroke lengths (L0) between 2D and 32D. The heat transfer results show evidence of distinct regimes in terms of L0/D and L0/H ratios. Based on appropriate scaling, four heat transfer regimes are identified which justifies a detailed study of the flow field characteristics. High speed particle image velocimetry (PIV) has been employed to measure the time-resolved velocity flow fields of the synthetic jet to identify the flow structures at selected L0/H values corresponding to the identified heat transfer regimes. The flow measurements support the same regimes as identified from the heat transfer measurements and provide physical insight for the heat transfer behaviour.


1974 ◽  
Vol 62 (1) ◽  
pp. 41-64 ◽  
Author(s):  
P. Chassaing ◽  
J. George ◽  
A. Claria ◽  
F. Sananes

This paper deals with local flow characteristics of subsonic turbulent jets in the presence of a cross-flow. For the various types of jet considered (a cylindrical jet and coaxial jets) the experimental results concern the axes and the velocity profiles in the plane of symmetry of the flow. In the case of the cylindrical jet, the shape of the universal axial velocity profile is defined, as are the law of velocity decay along the axis and the laws of variation of the thicknesses of the jet. Finally, the existence of a link between the axis equation and the law of axial velocity decay in the zone of similarity of the velocity profiles is established.


Author(s):  
Tim Persoons ◽  
Tadhg S. O’Donovan ◽  
Darina B. Murray

An impinging synthetic jet can attain heat transfer rates comparable to a continuous jet, without net mass input. However it needs a forced cross-flow to supply fresh cooling medium. The vectoring effect of adjacent synthetic jets allows directing the flow by changing the phase between the jets. This study uses the vectoring effect of two adjacent synthetic jets to draw in fresh air, while maintaining high impingement cooling performance. The experimental approach applies infrared thermography and particle image velocimetry to quantify the local convective heat transfer and flow field, respectively. The heat transfer profiles for various phase differences have been compared to the mean flow field and wall-normal velocity fluctuation intensity. For a fixed operating point (stroke length and Reynolds number) and geometry, the cooling performance has been optimised for phase and jet-to-surface spacing, resulting in about 90% enhancement of the maximum and overall cooling rate compared to a single jet, without the need for external cross-flow forcing.


Sign in / Sign up

Export Citation Format

Share Document