scholarly journals Heat-transport scaling and transition in geostrophic rotating convection with varying aspect ratio

2021 ◽  
Vol 6 (7) ◽  
Author(s):  
Hao-Yuan Lu ◽  
Guang-Yu Ding ◽  
Jun-Qiang Shi ◽  
Ke-Qing Xia ◽  
Jin-Qiang Zhong
2020 ◽  
Vol 61 (2) ◽  
pp. 023101
Author(s):  
B. Pachev ◽  
J. P. Whitehead ◽  
G. Fantuzzi ◽  
I. Grooms

2020 ◽  
Author(s):  
Sebastian Giersch ◽  
Siegfried Raasch

<p>Dust devils are convective vortices with a vertical axis of rotation mainly characterized by a local minimum in pressure and a local maximum in vertical vorticity within the vortex core. They are made visible by entrained dust particles. That's why they occur primarily in dry and hot areas. Currently, there is great uncertainty about the extent to which dust devils contribute to the atmospheric aerosol and heat transport and thereby influence earth's radiation budget as well as boundary layer properties. Past efforts to quantify the aerosol or heat transport and to study dust devils' formation, maintenance, and statistics using large-eddy simulation (LES) as well as direct numerical simulation (DNS) have been of limited success. Therefore, this study aims to provide better statistical information about dust devil-like structures and to extend, prove or disprove existing theories about the development and maintenance of dust devils. Especially, the vortex strength measured through the pressure drop in the vortex core is regarded, which is, in past LES simulations, almost one order of magnitude smaller compared to the observed range of several hundreds Pascals. <br>So far, we are able to reproduce observed core pressures with LES of the convective boundary layer by using a high spatial resolution of 2m while considering a domain of 4km x 4km x 2km, a model setup with moderate background wind and a spatially heterogeneous surface heat flux. It is found that vortices mainly appear at the vertices and branches of the cellular pattern and at lines of horizontal flow convergence above the centers of the strongly heated patches. The latter result is in contrast to some older observations in which vortices seemed to be created along the patch edges. Also further statistical properties, like lifetimes, diameters or frequency of occurrence, fit quite well in the observed range. Nevertheless, statistics of dust devils from LES face the general problem that they are highly influenced by the used grid spacing and thereby by the structures that can be explicitly resolved. For example, the near surface layer, which plays a major role for the vortex development, is poorly resolved and turbulent processes in this layer are highly parameterized. DNS would overcome this problem. Therefore, dust devil-like structures are also investigated with DNS by simulating laboratory-like Rayleigh-Bénard convection with Rayleigh numbers up to 10<sup>12</sup>. Such high Rayleigh numbers have never been used in DNS studies of dust devils. The focus is on the vortex formation dependence on the used Rayleigh number and aspect ratio. First results of the laboratory-like Rayleigh-Bénard convection simulated with DNS confirm the existence of dust devil-like structures also on small scales with much lower Rayleigh numbers than in the atmosphere. <br>In a next step, detailed statistics of dust devil-like structures in Rayleigh-Bénard convection will be derived focusing on Rayleigh number and aspect ratio dependencies. Afterwards, results will be compared to LES simulations of dust devils and experimental data.</p>


2021 ◽  
Vol 118 (44) ◽  
pp. e2105015118
Author(s):  
Vincent Bouillaut ◽  
Benjamin Miquel ◽  
Keith Julien ◽  
Sébastien Aumaître ◽  
Basile Gallet

The competition between turbulent convection and global rotation in planetary and stellar interiors governs the transport of heat and tracers, as well as magnetic field generation. These objects operate in dynamical regimes ranging from weakly rotating convection to the “geostrophic turbulence” regime of rapidly rotating convection. However, the latter regime has remained elusive in the laboratory, despite a worldwide effort to design ever-taller rotating convection cells over the last decade. Building on a recent experimental approach where convection is driven radiatively, we report heat transport measurements in quantitative agreement with this scaling regime, the experimental scaling law being validated against direct numerical simulations (DNS) of the idealized setup. The scaling exponent from both experiments and DNS agrees well with the geostrophic turbulence prediction. The prefactor of the scaling law is greater than the one diagnosed in previous idealized numerical studies, pointing to an unexpected sensitivity of the heat transport efficiency to the precise distribution of heat sources and sinks, which greatly varies from planets to stars.


Sign in / Sign up

Export Citation Format

Share Document