Density-Functional Calculations of the Structure of Near-Surface Oxygen Vacancies and Electron Localization onCeO2(111)

2009 ◽  
Vol 102 (2) ◽  
Author(s):  
M. Verónica Ganduglia-Pirovano ◽  
Juarez L. F. Da Silva ◽  
Joachim Sauer
Catalysts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 312 ◽  
Author(s):  
Antonella Glisenti ◽  
Andrea Vittadini

The effects of modifying the composition of LaCoO3 on the catalytic activity are predicted by density functional calculations. Partially replacing La by Sr ions has benefical effects, causing a lowering of the formation energy of O vacancies. In contrast to that, doping at the Co site is less effective, as only 3d impurities heavier than Co are able to stabilize vacancies at high concentrations. The comparison of the energy profiles for CO oxidation of undoped and of Ni-, Cu-m and Zn-doped (La,Sr)CoO3(100) surface shows that Cu is most effective. However, the effects are less spectacular than in the SrTiO3 case, due to the different energetics for the formation of oxygen vacancies in the two hosts.


2019 ◽  
Vol 124 (1) ◽  
pp. 625-638 ◽  
Author(s):  
G. S. Otero ◽  
P. G. Lustemberg ◽  
F. Prado ◽  
M. V. Ganduglia-Pirovano

2015 ◽  
Vol 117 (11) ◽  
pp. 112811 ◽  
Author(s):  
Atsushi Oshiyama ◽  
Jun-Ichi Iwata ◽  
Kazuyuki Uchida ◽  
Yu-Ichiro Matsushita

Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1163
Author(s):  
Lan-li Chen ◽  
Bao-gai Zhai ◽  
Yuan Ming Huang

It is significant to render visible-light photocatalytic activity to undoped ZnO nanostructures via intrinsic defect engineering. In this work, undoped ZnO nanocrystals were derived via co-precipitation synthesis. The resulting ZnO nanocrystals were characterized by means of X-ray diffraction, scanning electron microscopy, photoluminescence spectroscopy, and ultraviolet-visible absorption spectroscopy, respectively. The visible-light photocatalytic activity of the products were characterized by monitoring the decomposition of methyl orange in water under visible-light illumination of a 300 W halogen lamp. It is found that undoped ZnO nanocrystals exhibit visible-light photocatalytic activity with their first-order rate constant up to 4.6 × 10−3 min−1. Density functional calculations show that oxygen vacancies create deep energy levels at EV + 0.76 eV in the bandgap of ZnO. In conjunction with the density functional calculations, the photocatalytic degradation of methyl orange under visible-light irradiation provides direct evidence that oxygen vacancies in ZnO nanocrystals yield the visible-light photocatalytic activity. Our results demonstrate that visible-light photocatalytic activity can be endowed to undoped ZnO nanocrystals by manipulating the intrinsic defects in ZnO. Intrinsic defect-modulated ZnO photocatalysts thus represent a powerful configuration for further development toward visible-light responsive photocatalysis.


2019 ◽  
Author(s):  
G. S. Otero ◽  
Pablo Lustemberg ◽  
Fernando D. Prado ◽  
M. V. Ganduglia-Pirovano

Ceria (CeO2)-based materials are of great importance in numerous technological applications such as three-way catalysts (TWCs) [Catal. Today 62, 35-50 (2000) and Chem. Rev. 116, 5987-6041 (2016)], hydrocarbon reforming [Chem. Rev. 116, 5987-6041 (2016) and Catalysis by Ceria and Related Materials; Trovarelli, A.; Fornasiero, P., Eds.; 2nd Edition; Imperial College Press: London, 2013] and solid oxide fuel cells (SOFC) [Chem. Rev. 116, 5987-6041 (2016) and Catalysis by Ceria and Related Materials; Trovarelli, A.; Fornasiero, P., Eds.; 2nd Edition; Imperial College Press: London, 2013]. These materials possess a property that is key to most of such applications, namely, their capability for easy conversion between the Ce4+ and Ce3+ oxidation states, which is achieved by releasing oxygen atoms from the crystal lattice and forming oxygen vacancies. In particular, the replacement of Ce by Zr to form CeO2-ZrO2 solid solutions was found to facilitate the reducibility of the oxide as well as to increase the oxygen storage capacity and the system thermal stability, compared to pure CeO2. This theoretical work employing DFT+U calculations, is a systematic study of the effects of Zr doping on the stoichiometric and reduced CeO2(111) surfaces to determine the preferred location of the Zr dopants at various concentrations, as well as to pinpoint how Zr doping affects the stability of near-surface oxygen vacancies -including the position of the Ce3+ ions. We found that for a given Zr content, the more stable structures do not correspond to those configurations with Zr located in the topmost O-Ce-O trilayer (TL1), but in inner layers, and the stability decreases with increasing Zr concentration. Regarding the formation of oxygen vacancies, it was found that the most stable configuration corresponds to the Zr atom located in the surface layer (TL1) neighboring a subsurface oxygen vacancy with next-nearest neighbor Ce3+, being the formation energy equal to 1.16 eV. The corresponding surface oxygen vacancy is 0.16 eV less stable. These values are by 0.73 and 0.92 eV, respectively, smaller than the corresponding ones for the pure CeO2(111) surface. The results are explained in terms of Zr- and vacancy-induced lattice relaxation effects. This study provides microscopic insight into the interplay between Zr-doping, vacancy formation, lattice relaxations, and the localization of the excess charge that will be key to understanding surface chemistry and catalysis on Zr-doped ceria surface, as well as conductive ceria-based materials for advanced applications.<br>


2018 ◽  
Vol 20 (8) ◽  
pp. 5856-5864 ◽  
Author(s):  
Li-Li Yin ◽  
Guanzhong Lu ◽  
Xue-Qing Gong

The catalytic degradation of 1,2-dichloroethane (DCE) at CeO2(111) have been investigated by periodic density functional theory calculations corrected by on-site Coulomb interactions, and the surface oxygen vacancies were found to be important by providing the adsorption sites as well as charge transfer to favor the C–Cl bond breaking.


2021 ◽  
Vol 33 (50) ◽  
pp. 504003
Author(s):  
Patricia Pérez-Bailac ◽  
Pablo G Lustemberg ◽  
M Verónica Ganduglia-Pirovano

2019 ◽  
Author(s):  
G. S. Otero ◽  
Pablo Lustemberg ◽  
Fernando D. Prado ◽  
M. V. Ganduglia-Pirovano

Ceria (CeO2)-based materials are of great importance in numerous technological applications such as three-way catalysts (TWCs) [Catal. Today 62, 35-50 (2000) and Chem. Rev. 116, 5987-6041 (2016)], hydrocarbon reforming [Chem. Rev. 116, 5987-6041 (2016) and Catalysis by Ceria and Related Materials; Trovarelli, A.; Fornasiero, P., Eds.; 2nd Edition; Imperial College Press: London, 2013] and solid oxide fuel cells (SOFC) [Chem. Rev. 116, 5987-6041 (2016) and Catalysis by Ceria and Related Materials; Trovarelli, A.; Fornasiero, P., Eds.; 2nd Edition; Imperial College Press: London, 2013]. These materials possess a property that is key to most of such applications, namely, their capability for easy conversion between the Ce4+ and Ce3+ oxidation states, which is achieved by releasing oxygen atoms from the crystal lattice and forming oxygen vacancies. In particular, the replacement of Ce by Zr to form CeO2-ZrO2 solid solutions was found to facilitate the reducibility of the oxide as well as to increase the oxygen storage capacity and the system thermal stability, compared to pure CeO2. This theoretical work employing DFT+U calculations, is a systematic study of the effects of Zr doping on the stoichiometric and reduced CeO2(111) surfaces to determine the preferred location of the Zr dopants at various concentrations, as well as to pinpoint how Zr doping affects the stability of near-surface oxygen vacancies -including the position of the Ce3+ ions. We found that for a given Zr content, the more stable structures do not correspond to those configurations with Zr located in the topmost O-Ce-O trilayer (TL1), but in inner layers, and the stability decreases with increasing Zr concentration. Regarding the formation of oxygen vacancies, it was found that the most stable configuration corresponds to the Zr atom located in the surface layer (TL1) neighboring a subsurface oxygen vacancy with next-nearest neighbor Ce3+, being the formation energy equal to 1.16 eV. The corresponding surface oxygen vacancy is 0.16 eV less stable. These values are by 0.73 and 0.92 eV, respectively, smaller than the corresponding ones for the pure CeO2(111) surface. The results are explained in terms of Zr- and vacancy-induced lattice relaxation effects. This study provides microscopic insight into the interplay between Zr-doping, vacancy formation, lattice relaxations, and the localization of the excess charge that will be key to understanding surface chemistry and catalysis on Zr-doped ceria surface, as well as conductive ceria-based materials for advanced applications.<br>


Sign in / Sign up

Export Citation Format

Share Document