scholarly journals Symmetries and Many-Body Excitations with Neural-Network Quantum States

2018 ◽  
Vol 121 (16) ◽  
Author(s):  
Kenny Choo ◽  
Giuseppe Carleo ◽  
Nicolas Regnault ◽  
Titus Neupert
2018 ◽  
Vol 16 (08) ◽  
pp. 1840008 ◽  
Author(s):  
Nahuel Freitas ◽  
Giovanna Morigi ◽  
Vedran Dunjko

It was recently proposed to leverage the representational power of artificial neural networks, in particular Restricted Boltzmann Machines, in order to model complex quantum states of many-body systems [G. Carleo and M. Troyer, Science 355(6325) (2017) 602.]. States represented in this way, called Neural Network States (NNSs), were shown to display interesting properties like the ability to efficiently capture long-range quantum correlations. However, identifying an optimal neural network representation of a given state might be challenging, and so far this problem has been addressed with stöchastic optimization techniques. In this work, we explore a different direction. We study how the action of elementary quantum operations modifies NNSs. We parametrize a family of many body quantum operations that can be directly applied to states represented by Unrestricted Boltzmann Machines, by just adding hidden nodes and updating the network parameters. We show that this parametrization contains a set of universal quantum gates, from which it follows that the state prepared by any quantum circuit can be expressed as a Neural Network State with a number of hidden nodes that grows linearly with the number of elementary operations in the circuit. This is a powerful representation theorem (which was recently obtained with different methods) but that is not directly useful, since there is no general and efficient way to extract information from this unrestricted description of quantum states. To circumvent this problem, we propose a step-wise procedure based on the projection of Unrestricted quantum states to Restricted quantum states. In turn, two approximate methods to perform this projection are discussed. In this way, we show that it is in principle possible to approximately optimize or evolve Neural Network States without relying on stochastic methods such as Variational Monte Carlo, which are computationally expensive.


2021 ◽  
Author(s):  
Ying Yang ◽  
Huaixin Cao

Abstract With the rapid development of machine learning, artificial neural networks provide a powerful tool to represent or approximate many-body quantum states. It was proved that every graph state can be generated by a neural network. In this paper, we aim to introduce digraph states and explore their neural network representations (NNRs). Based on some discussions about digraph states and neural network quantum states (NNQSs), we construct explicitly the NNR for any digraph state, implying every digraph state is an NNQS. The obtained results will provide a theoretical foundation for solving the quantum many-body problem with machine learning method whenever the wave-function is known as an unknown digraph state or it can be approximated by digraph states.


Author(s):  
Ying Yang ◽  
Chengyang Zhang ◽  
Huaixin Cao

The many-body problem in quantum physics originates from the difficulty of describing the non-trivial correlations encoded in the exponential complexity of the many-body wave function. Motivated by the Giuseppe Carleo's work titled solving the quantum many-body problem with artificial neural networks [Science, 2017, 355: 602], we focus on finding the NNQS approximation of the unknown ground state of a given Hamiltonian $H$ in terms of the best relative error and explore the influences of sum, tensor product, local unitary of Hamiltonians on the best relative error. Besides, we illustrate our method with some examples.


Science ◽  
2013 ◽  
Vol 340 (6137) ◽  
pp. 1205-1208 ◽  
Author(s):  
Michael Walter ◽  
Brent Doran ◽  
David Gross ◽  
Matthias Christandl

Entangled many-body states are an essential resource for quantum computing and interferometry. Determining the type of entanglement present in a system usually requires access to an exponential number of parameters. We show that in the case of pure, multiparticle quantum states, features of the global entanglement can already be extracted from local information alone. This is achieved by associating any given class of entanglement with an entanglement polytope—a geometric object that characterizes the single-particle states compatible with that class. Our results, applicable to systems of arbitrary size and statistics, give rise to local witnesses for global pure-state entanglement and can be generalized to states affected by low levels of noise.


Science ◽  
2019 ◽  
Vol 364 (6437) ◽  
pp. 260-263 ◽  
Author(s):  
Tiff Brydges ◽  
Andreas Elben ◽  
Petar Jurcevic ◽  
Benoît Vermersch ◽  
Christine Maier ◽  
...  

Entanglement is a key feature of many-body quantum systems. Measuring the entropy of different partitions of a quantum system provides a way to probe its entanglement structure. Here, we present and experimentally demonstrate a protocol for measuring the second-order Rényi entropy based on statistical correlations between randomized measurements. Our experiments, carried out with a trapped-ion quantum simulator with partition sizes of up to 10 qubits, prove the overall coherent character of the system dynamics and reveal the growth of entanglement between its parts, in both the absence and presence of disorder. Our protocol represents a universal tool for probing and characterizing engineered quantum systems in the laboratory, which is applicable to arbitrary quantum states of up to several tens of qubits.


Author(s):  
Eduardo Bayro-Corrochano ◽  
Samuel Solis-Gamboa

Since the introduction of quaternion by Hamilton in 1843, quaternions have been used in a lot of applications. One of the most interesting qualities is that we can use quaternions to carry out rotations and operate on other quaternions; this characteristic of the quaternions inspired us to investigate how the quantum states and quantum operator work in the field of quaternions and how we can use it to construct a quantum neural network. This new type of quantum neural network (QNN) is developed in the quaternion algebra framework that is isomorphic to the rotor algebra [Formula: see text] of the geometric algebra and is based on the so-called qubit neuron model. The quaternion quantum neural network (QQNN) is tested and shows robust performance.


Sign in / Sign up

Export Citation Format

Share Document