Digraph states and their neural network representations

2021 ◽  
Author(s):  
Ying Yang ◽  
Huaixin Cao

Abstract With the rapid development of machine learning, artificial neural networks provide a powerful tool to represent or approximate many-body quantum states. It was proved that every graph state can be generated by a neural network. In this paper, we aim to introduce digraph states and explore their neural network representations (NNRs). Based on some discussions about digraph states and neural network quantum states (NNQSs), we construct explicitly the NNR for any digraph state, implying every digraph state is an NNQS. The obtained results will provide a theoretical foundation for solving the quantum many-body problem with machine learning method whenever the wave-function is known as an unknown digraph state or it can be approximated by digraph states.

Soft Matter ◽  
2020 ◽  
Author(s):  
Ulices Que-Salinas ◽  
Pedro Ezequiel Ramirez-Gonzalez ◽  
Alexis Torres-Carbajal

In this work we implement a machine learning method to predict the thermodynamic state of a liquid using only its microscopic structure provided by the radial distribution function (RDF). The...


Author(s):  
Jian Yi

The stability of the economic market is an important factor for the rapid development of the economy, especially for the listed companies, whose financial and economic stability affects the stability of the financial market. It is helpful for the healthy development of enterprises and financial markets to make an accurate early warning of the financial economy of listed enterprises. This paper briefly introduced the support vector machine (SVM) and back-propagation neural network (BPNN) algorithms in the machine learning method. To make up for the defects of the two algorithms, they were combined and applied to the enterprise financial economics early warning. A simulation experiment was carried out on the single SVM algorithm-based, single BPNN algorithm-based, and SVM algorithm and BPNN algorithm combined model with the MATLAB software. The results show that the SVM algorithm and BP algorithm combined model converges faster and has higher precision and recall rate and larger area under the curve (AUC) than the single SVM algorithm-based model and the single BPNN algorithm-based model.


2019 ◽  
Vol 490 (4) ◽  
pp. 4770-4777 ◽  
Author(s):  
M Kovačević ◽  
G Chiaro ◽  
S Cutini ◽  
G Tosti

ABSTRACT Machine learning is an automatic technique that is revolutionizing scientific research, with innovative applications and wide use in astrophysics. The aim of this study was to develop an optimized version of an Artificial Neural Network machine learning method for classifying blazar candidates of uncertain type detected by the Fermi Large Area Telescope γ-ray instrument. The final result of this study increased the classification performance by about 80 ${{\ \rm per\ cent}}$ with respect to previous method, leaving only 15 unclassified blazars out of 573 blazar candidates of uncertain type listed in the LAT 4-year Source Catalog.


Author(s):  
Abhishek Das ◽  
Mihir Narayan Mohanty

In this chapter, the authors have reviewed on optical character recognition. The study belongs to both typed characters and handwritten character recognition. Online and offline character recognition are two modes of data acquisition in the field of OCR and are also studied. As deep learning is the emerging machine learning method in the field of image processing, the authors have described the method and its application of earlier works. From the study of the recurrent neural network (RNN), a special class of deep neural network is proposed for the recognition purpose. Further, convolutional neural network (CNN) is combined with RNN to check its performance. For this piece of work, Odia numerals and characters are taken as input and well recognized. The efficacy of the proposed method is explained in the result section.


2020 ◽  
Author(s):  
Yinxue Liu ◽  
Paul Bates ◽  
Jeffery Neal ◽  
Dai Yamazaki

<p>Precise representation of global terrain is of great significance for estimating global flood risk. As the most vulnerable areas to flooding, urban areas need GDEMs of high quality. However, current Global Digital Elevation Models (GDEMs) are all Digital Surface Models (DSMs) in urban areas, which will cause substantial blockages of flow pathways within flood inundation models. By taking GPS and LIDAR data as terrain observations, errors of popular GDEMs (including SRTM 1” void-filled version DEM - SRTM, Multi-Error-Removed Improved-Terrain DEM - MERIT and TanDEM-X 3” resolution DEM -TDM3) were analysed in seven varied types of cities. It was found that the RMSE of GDEMs errors are in the range of 2.3 m – 7.9 m, and that MERIT and TDM3 both outperformed SRTM. The error comparison between MERIT and TDM3 showed that the most accurate model varied among the studied cities. Generally, error of TDM3 is slightly lower than MERIT, but TDM3 has more extreme errors (absolute value exceeds 15 m). For cities which have experienced rapid development in the past decade, the RMSE of MERIT is lower than that of TDM3, which is mainly caused by the acquisition time difference between these two models. A machine learning method was adopted to estimate MERIT error. Night Time Light, world population density data, Openstreetmap building data, slope, elevation and neighbourhood elevation values from widely available datasets, comprising 14 factors in total, were used in the regression. Models were trained based on single city and combinations of cities, respectively, and then used to estimate error in a target city. By this approach, the RMSE of corrected MERIT can decline by up to 75% with target city trained model, though less significant a reduction of 35% -68% was shown in the combined model with target city excluded in the training data. Further validation via flood simulation showed improvements in terms of both flood extent and inundation depth by the corrected MERIT over the original MERIT, with a validation in small sized city. However, the corrected MERIT was not as good as TDM3 in this case. This method has the potential to generate a better bare-earth global DEM in urban areas, but the sensitive level about the model extrapolative application needs investigation in more study sites.</p>


2019 ◽  
Vol 15 (2) ◽  
pp. 141-148
Author(s):  
Sri Rahayu ◽  
Fitra Septia Nugraha ◽  
Muhammad Ja’far Shidiq

Human health is very important to always pay attention especially after someone has been declared suffering from an illness that can inhibit positive activities. One of the most feared diseases of the 20th century is cancer. This disease requires treatment that is quite expensive. Alternative treatments are cryotherapy or ice therapy. But cryotherapy also has side effects, it is necessary to do research on its success by taking into account certain conditions of the parameters. So the purpose of this study is to analyze the success of cryotherapy so that the dataset can be used as one of the benchmarks for the success of the cryotherapy tratment method. The method used in this study is the machine learning method of Neural Network with 500 training cycles, learning rate of 0,003 and momentum 0,9 which results in a good classification of obtaining quite high accuracy of 87,78% and AUC value of 0,955.


Author(s):  
Amri Muhaimin ◽  
Hendri Prabowo ◽  
Suhartono

The objective of this research is to obtain the best method for forecasting rainfall in the Wonorejo reservoir in Surabaya. Time series and causal approaches using statistical methods and machine learning will be compared to forecast rainfall. Time series regression (TSR), autoregressive integrated moving average (ARIMA), linear regression (LR), and transfer function (TF) are used as a statistical method. Feedforward neural network (FFNN) and deep feed-forward neural network (DFFNN) is used as a machine learning method. Statistical methods are used to capture linear patterns, whereas the machine learning method is used to capture nonlinear patterns. Data about hourly rainfall in the Wonorejo reservoir is used as a case study. The data has a seasonal pattern, i.e. monthly seasonality. Based on the cross-validation and information criteria, the results showed that DFFNN using the time series approach has a more accurate forecast than other methods. In general, machine learning methods have better accuracy than statistical methods. Furthermore, additional information is obtained, through this research the parameter that best to make a neural network model is known. Moreover, these results are also not in line with the results of M3 and M4 competition, i.e. more complex methods do not necessarily produce better forecasts than simpler methods.


Author(s):  
Ying Yang ◽  
Chengyang Zhang ◽  
Huaixin Cao

The many-body problem in quantum physics originates from the difficulty of describing the non-trivial correlations encoded in the exponential complexity of the many-body wave function. Motivated by the Giuseppe Carleo's work titled solving the quantum many-body problem with artificial neural networks [Science, 2017, 355: 602], we focus on finding the NNQS approximation of the unknown ground state of a given Hamiltonian $H$ in terms of the best relative error and explore the influences of sum, tensor product, local unitary of Hamiltonians on the best relative error. Besides, we illustrate our method with some examples.


2021 ◽  
Vol 6 (1) ◽  
pp. 18
Author(s):  
Diny Melsye Nurul Fajri

Kenaf fiber is mainly used for forest wood substitute industrial products. Thus, the kenaf fiber can be promoted as the main composition of environmentally friendly goods. Unfortunately, there are several Kenaf gardens that have been stricken with the disease-causing a lack of yield. By utilizing advances in technology, it was felt to be able to help kenaf farmers quickly and accurately detect which pests or diseases attacked their crops. This paper will discuss the application of the machine learning method which is a Convolutional Neural Network (CNN) that can provide results for inputting leaf images into the results of temporary diagnoses. The data used are 838 image data for 4 classes. The average results prove that with CNN an accuracy value of 73% can be achieved for the detection of diseases and plant pests in Kenaf plants.


Sign in / Sign up

Export Citation Format

Share Document