scholarly journals Nonreciprocal Transport Based on Cavity Floquet Modes in Optomechanics

2020 ◽  
Vol 125 (2) ◽  
Author(s):  
Laure Mercier de Lépinay ◽  
Caspar F. Ockeloen-Korppi ◽  
Daniel Malz ◽  
Mika A. Sillanpää
Keyword(s):  
1998 ◽  
Vol 356 ◽  
pp. 353-379 ◽  
Author(s):  
STÉPHANE LEBLANC ◽  
CLAUDE CAMBON

A detailed investigation of the effects of the Coriolis force on the three-dimensional linear instabilities of Stuart vortices is proposed. This exact inviscid solution describes an array of co-rotating vortices embedded in a shear flow. When the axis of rotation is perpendicular to the plane of the basic flow, the stability analysis consists of an eigenvalue problem for non-parallel versions of the coupled Orr–Sommerfeld and Squire equations, which is solved numerically by a spectral method. The Coriolis force acts on instabilities as a ‘tuner’, when compared to the non-rotating case. A weak anticyclonic rotation is destabilizing: three-dimensional Floquet modes are promoted, and at large spanwise wavenumber their behaviour is predicted by a ‘pressureless’ analysis. This latter analysis, which has been extensively discussed for simple flows in a recent paper (Leblanc & Cambon 1997) is shown to be relevant to the present study. The basic mechanism of short-wave breakdown is a competition between instabilities generated by the elliptical cores of the vortices and by the hyperbolic stagnation points in the braids, in accordance with predictions from the ‘geometrical optics’ stability theory. On the other hand, cyclonic or stronger anticyclonic rotation kills three-dimensional instabilities by a cut-off in the spanwise wavenumber. Under rapid rotation, the Stuart vortices are stabilized, whereas inertial waves propagate.


2020 ◽  
Vol 131 (2) ◽  
pp. 24007
Author(s):  
Guillaume d'Hardemare ◽  
Antonin Eddi ◽  
Emmanuel Fort

1992 ◽  
Vol 28 (5) ◽  
pp. 3294-3296
Author(s):  
K. Sabetfakhri ◽  
S.M. Hanna
Keyword(s):  

2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Gizem D. Acar ◽  
Brian F. Feeny

General responses of multi-degrees-of-freedom (MDOF) systems with parametric stiffness are studied. A Floquet-type solution, which is a product between an exponential part and a periodic part, is assumed, and applying harmonic balance, an eigenvalue problem is found. Solving the eigenvalue problem, frequency content of the solution and response to arbitrary initial conditions are determined. Using the eigenvalues and the eigenvectors, the system response is written in terms of “Floquet modes,” which are nonsynchronous, contrary to linear modes. Studying the eigenvalues (i.e., characteristic exponents), stability of the solution is investigated. The approach is applied to MDOF systems, including an example of a three-blade wind turbine, where the equations of motion have parametric stiffness terms due to gravity. The analytical solutions are also compared to numerical simulations for verification.


Sign in / Sign up

Export Citation Format

Share Document