scholarly journals Low Mass Black Holes from Dark Core Collapse

2021 ◽  
Vol 126 (14) ◽  
Author(s):  
Basudeb Dasgupta ◽  
Ranjan Laha ◽  
Anupam Ray
Keyword(s):  
Low Mass ◽  
2016 ◽  
Vol 12 (S324) ◽  
pp. 27-30
Author(s):  
I. F. Mirabel

AbstractHere are reviewed the insights from observations at optical and infrared wavelengths for low mass limits above which stars do not seem to end as luminous supernovae. These insights are: (1) the absence in archived images of nearby galaxies of stellar progenitors of core-collapse supernovae above 16-18 M⊙, (2) the identification of luminous-massive stars that quietly disappear without optically bright supernovae, (3) the absence in the nebular spectra of supernovae of type II-P of the nucleosynthetic products expected from progenitors above 20 M⊙, (4) the absence in color magnitude diagrams of stars in the environment of historic core-collapse supernovae of stars with ⩾20 M⊙. From the results in these different areas of observational astrophysics, and the recently confirmed dependence of black hole formation on metallicity and redshift of progenitors, it is concluded that a large fraction of massive stellar binaries in the universe end as binary black holes.


2020 ◽  
Vol 15 (S359) ◽  
pp. 238-242
Author(s):  
Mar Mezcua

AbstractDetecting the seed black holes from which quasars formed is extremely challenging; however, those seeds that did not grow into supermassive should be found as intermediate-mass black holes (IMBHs) of 100 – 105 M⊙ in local dwarf galaxies. The use of deep multiwavelength surveys has revealed that a population of actively accreting IMBHs (low-mass AGN) exists in dwarf galaxies at least out to z ˜3. The black hole occupation fraction of these galaxies suggests that the early Universe seed black holes formed from direct collapse of gas, which is reinforced by the possible flattening of the black hole-galaxy scaling relations at the low-mass end. This scenario is however challenged by the finding that AGN feedback can have a strong impact on dwarf galaxies, which implies that low-mass AGN in dwarf galaxies might not be the untouched relics of the early seed black holes. This has important implications for seed black hole formation models.


New Astronomy ◽  
1999 ◽  
Vol 4 (4) ◽  
pp. 313-323 ◽  
Author(s):  
G.E. Brown ◽  
C.-H. Lee ◽  
Hans A. Bethe
Keyword(s):  
X Ray ◽  
Low Mass ◽  

2008 ◽  
Author(s):  
Smita Mathur ◽  
Himel Ghosh ◽  
Laura Ferrarese ◽  
Fabrizio Fiore ◽  
Sandip K. Chakrabarti ◽  
...  

Author(s):  
Andrew J. Benson

There is now good observational evidence that some type of feedback process must operate within galaxies. Such a process has long been thought to exist on the basis of theoretical studies of galaxy formation. This feedback is responsible for regulating the rate of star formation and thereby preventing the formation of an overabundance of low–mass galaxies. There is gathering evidence that this feedback process must somehow involve the supermassive black holes thought to dwell in the centres of galaxies.


2018 ◽  
Vol 14 (S346) ◽  
pp. 397-416
Author(s):  
Michela Mapelli

AbstractWhat are the formation channels of merging black holes and neutron stars? The first two observing runs of Advanced LIGO and Virgo give us invaluable insights to address this question, but a new approach to theoretical models is required, in order to match the challenges posed by the new data. In this review, I discuss the impact of stellar winds, core-collapse and pair instability supernovae on the formation of compact remnants in both isolated and dynamically formed binaries. Finally, I show that dynamical processes, such as the runaway collision scenario and the Kozai-Lidov mechanism, leave a clear imprint on the demography of merging systems.


2011 ◽  
Vol 1 (1) ◽  
pp. 4 ◽  
Author(s):  
Felix F. Brezinski ◽  
Ahmad A. Hujeirat

A general relativistic model for the formation and acceleration of low mass-loaded jets from systems containing accreting black holes is presented. The model is based on previous numerical results and theoretical studies in the Newtonian regime, but modified to include the effects of space-time curvature in the vicinity of the event horizon of a spinning black hole. It is argued that the boundary layer between the Keplerian accretion disk and the event horizon is best suited for the formation and acceleration of the accretion-powered jets in active galactic nuclei and micro-quasars. The model presented here is based on matching the solutions of three different regions: i- a weakly magnetized Keplerian accretion disk in the outer part, where the transport of angular momentum is mediated through the magentorotational instability, ii- a strongly magnetized, advection-dominated and turbulent-free boundary layer (BL) between the outer cold accretion disk and the event horizon and where the plasma rotates sub-Keplerian and iii- a transition zone (TZ) between the BL and the overlying corona, where the electrons and protons are thermally uncoupled, highly dissipative and rotate super-Keplerian. In the BL, the gravitation-driven dynamical collapse of the plasma increases the strength of the poloidal magnetic field (PMF) significantly, subsequently suppressing the generation and dissipation of turbulence and turning off the primary source of heating. In this case, the BL appears much fainter than standard disk models so as if the disk truncates at a certain radius. The action of the PMF in the BL is to initiate torsional Alf`ven waves that transport angular momentum from the embedded plasma vertically into the TZ, where a significant fraction of the shear-generated toroidal magnetic field reconnects, thereby heating the protons up to the virial-temperature. Also, the strong PMF forces the electrons to cool rapidly, giving rise therefore to the formation of a gravitationally unbound two-temperature proton-dominated outflow. Our model predicts the known correlation between the Lorentz-factor and the spin parameter of the BH. It also shows that the effective surface of the BL, through which the baryons flow into the TZ, shrinks with increasing the spin parameter, implying therefore that low mass-loaded jets most likely originate from around Kerr black holes. When applying our model to the jet in the elliptical galaxy M87, we find a spin parameter <em>a ∈</em> [0.99, 0.998], a transition radius rtr ≈ 30 gravitational radii and a fraction of 0.05 − 0.1 of the mass accretion rate goes into the TZ, where the plasma speeds up its outward-oriented motion to reach a Lorentz factor Γ <em>∈</em> [2.5, 5.0] at rtr.


2019 ◽  
Vol 14 (S353) ◽  
pp. 286-288
Author(s):  
Dieu D. Nguyen

AbstractThe existence intermediate mass black holes (IMBH, MBH ≲ 106M⊙) at the centers low-mass galaxies with stellar masses between (1–10)×10M⊙ are key to constraining the origin of black hole (BH) seeds and understanding the physics deriving the co-evolution of central BHs and their host galaxies. However, finding and weighing IMBH is challenging. Here, we present the first observational evidence for such IMBHs at the centers of the five nearest early-type galaxies (D < 3.5 Mpc, ETGs) revealed by adaptive optics kinematics from Gemini and VLT and high-resolution HST spectroscopy. We find that all five galaxies appear to host IMBHs with four of the five having masses below 1 million M⊙ and the lowest mass BH being only ∼7,000 M⊙. This work provides a first glimpse of the demographics of IMBHs in this galaxy mass range and at velocity dispersions < 70 km/s, and thus provides an important extension to the bulge mass and galaxy dispersion scaling relations. The ubiquity of central BHs in these galaxies provides a unique constraint on BH seed formation scenarios, favoring a formation mechanism that produces an abundance of low-mass seed BHs.


Sign in / Sign up

Export Citation Format

Share Document