Proprioceptive Mechanism for Bioinspired Fish Swimming

2021 ◽  
Vol 126 (23) ◽  
Author(s):  
J. Sánchez-Rodríguez ◽  
F. Celestini ◽  
C. Raufaste ◽  
M. Argentina
Keyword(s):  
1993 ◽  
Vol 178 (1) ◽  
pp. 97-108 ◽  
Author(s):  
P. W. Webb

Kinematics and steady swimming performance were recorded for steelhead trout (approximately 12.2 cm in total length) swimming in channels 4.5, 3 and 1.6 cm wide in the centre of a flume 15 cm wide. Channel walls were solid or porous. Tail-beat depth and the length of the propulsive wave were not affected by spacing of either solid or porous walls. The product of tail-beat frequency, F, and amplitude, H, was related to swimming speed, u, and to harmonic mean distance of the tail from the wall, z. For solid walls: FH = 1.01(+/−0.31)u0.67(+/−0.09)z(0.12+/−0.02) and for grid walls: FH = 0.873(+/−0.302)u0.74(+/−0.08)z0.064(+/−0.024), where +/−2 s.e. are shown for regression coefficients. Thus, rates of working were smaller for fish swimming between solid walls, but the reduction due to wall effects decreased with increasing swimming speed. Porous grid walls had less effect on kinematics, except at low swimming speeds. Spacing of solid walls did not affect maximum tail-beat frequency, but maximum tail-beat amplitude decreased with smaller wall widths. Maximum tail-beat amplitude similarly decreased with spacing between grid walls, but maximum tail-beat frequency increased. Walls also reduced maximum swimming speed. Wall effects have not been adequately taken into account in most studies of fish swimming in flumes and fish wheels.


Author(s):  
Ruoxin Li ◽  
Qing Xiao ◽  
Lijun Li ◽  
Hao Liu

In this work, we numerically studied the steady swimming of a pufferfish driven by the undulating motion of its dorsal, anal and caudal fins. The simulations are based on experimentally measured kinematics. To model the self-propelled fish swimming, a Computational Fluid Dynamics (CFD) tool was coupled with a Multi-Body-Dynamics (MBD) technique. It is widely accepted that deformable/flexible or undulating fins are better than rigid fins in terms of propulsion efficiency. To elucidate the underlying mechanism, we established an undulating fins model based on the kinematics of live fish, and conducted a simulation under the same operating conditions as rigid fins. The results presented here agree with this view by showing that the contribution of undulating fins to propulsion efficiency is significantly larger than that of rigid fins.


Author(s):  
Lars C. Gansel ◽  
Siri Rackebrandt ◽  
Frode Oppedal ◽  
Thomas A. McClimans

This study explores the average flow field inside and around stocked Atlantic salmon (Salmo salar L.) fish cages. Laboratory tests and field measurements were conducted to study flow patterns around and through fish cages and the effect of fish on the water flow. Currents were measured around an empty and a stocked fish cage in a fjord to verify the results obtained from laboratory tests without fish and to study the effects of fish swimming in the cage. Fluorescein, a nontoxic, fluorescent dye, was released inside a stocked fish cage for visualization of three-dimensional flow patterns inside the cage. Atlantic salmon tend to form a torus shaped school and swim in a circular path, following the net during the daytime. Current measurements around an empty and a stocked fish cage show a strong influence of fish swimming in this circular pattern: while most of the oncoming water mass passes through the empty cage, significantly more water is pushed around the stocked fish cage. Dye experiments show that surface water inside stocked fish cages converges toward the center, where it sinks and spreads out of the cage at the depth of maximum biomass. In order to achieve a circular motion, fish must accelerate toward the center of the cage. This inward-directed force must be balanced by an outward force that pushes the water out of the cage, resulting in a low pressure area in the center of the rotational motion of the fish. Thus, water is pulled from above and below the fish swimming depth. Laboratory tests with empty cages agree well with field measurements around empty fish cages, and give a good starting point for further laboratory tests including the effect of fish-induced currents inside the cage to document the details of the flow patterns inside and adjacent to stocked fish cages. The results of such experiments can be used as benchmarks for numerical models to simulate the water flow in and around net pens, and model the oxygen supply and the spreading of wastes in the near wake of stocked fish farms.


1999 ◽  
Vol 24 (2) ◽  
pp. 237-252 ◽  
Author(s):  
M. Sfakiotakis ◽  
D.M. Lane ◽  
J.B.C. Davies

2012 ◽  
pp. 109-127 ◽  
Author(s):  
James C. Liao ◽  
Aline Cotel
Keyword(s):  

2021 ◽  
Author(s):  
Shuchuang Dong ◽  
Sang-gyu Park ◽  
Jinxin Zhou ◽  
Qiao Li ◽  
Takero Yoshida ◽  
...  

Abstract The interaction between fluid and fish cage with stocked fish is extremely complex, including fluid and structure, as well as fluid and fish swimming behavior. The on-current swimming pattern of fish schools was found toward the incoming flow in the previous laboratory studies, which is different from the circular swimming pattern commonly observed in the farming site. In this study, a pseudo fish school structure model (PFS) was proposed to reproduce the five circular swimming patterns of farmed yellowtail, and to investigate the influence of fish school behaviors on the flow field inside and around a model square fish cage in laboratory experiments. The results showed that the drag force acting on the square fish cage increased with the increase of the current speed for all fish school swimming patterns, but no clear difference was observed between the fish school swimming behavior patterns. Overall, the drag force of the square fish cage considering the farmed fish behavior decreased by 11.8%, compared to the drag force of the fish cage without PFS. The current speeds inside and downstream of the fish cage increased almost linearly with increasing current velocities. Compared with the case of the fish cage without PFS, the current speed inside the cage under motionless closely PFS (C0), revolving closely PFS (CR), motionless loosely PFS (L0) and revolving loosely PFS (LR) conditions changed by 10.8%, 9.4%, 65.8% and 39.7%, respectively. In addition, compared to the case of the fish cage without PFS, the current speeds under C0, CR, L0 and LR conditions decreased by 89.8%, 16.3%, 58.2%, and 31.9%, respectively, at 16.0cm downstream from the fish cage, and decreased by 69.2%, 19.4%, 62.7% and 26.3%, respectively, at 63.6cm downstream from the fish cage. Furthermore, the current speed distribution and relative horizontal turbulence intensity distribution inside and around the fish cage under different fish school swimming pattern was discussed. In the future, we will use live fish to conduct experiments to evaluate fish school models.


Sign in / Sign up

Export Citation Format

Share Document