swimming pattern
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 23)

H-INDEX

21
(FIVE YEARS 1)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 220
Author(s):  
Ester Sansegundo ◽  
Maximiliano Tourmente ◽  
Eduardo R. S. Roldan

Mammalian sperm differ widely in sperm morphology, and several explanations have been presented to account for this diversity. Less is known about variation in sperm physiology and cellular processes that can give sperm cells an advantage when competing to fertilize oocytes. Capacitation of spermatozoa, a process essential for mammalian fertilization, correlates with changes in motility that result in a characteristic swimming pattern known as hyperactivation. Previous studies revealed that sperm motility and velocity depend on the amount of ATP available and, therefore, changes in sperm movement occurring during capacitation and hyperactivation may involve changes in sperm bioenergetics. Here, we examine differences in ATP levels of sperm from three mouse species (genus Mus), differing in sperm competition levels, incubated under non-capacitating and capacitating conditions, to analyse relationships between energetics, capacitation, and swimming patterns. We found that, in general terms, the amount of sperm ATP decreased more rapidly under capacitating conditions. This descent was related to the development of a hyperactivated pattern of movement in two species (M. musculus and M. spicilegus) but not in the other (M. spretus), suggesting that, in the latter, temporal dynamics and energetic demands of capacitation and hyperactivation may be decoupled or that the hyperactivation pattern differs. The decrease in ATP levels during capacitation was steeper in species with higher levels of sperm competition than in those with lower levels. Our results suggest that, during capacitation, sperm consume more ATP than under non-capacitating conditions. This higher ATP consumption may be linked to higher velocity and lateral head displacement, which are associated with hyperactivated motility.


2021 ◽  
Author(s):  
Priyanka Sharan ◽  
Zuyao Xiao ◽  
Viviana Mancuso ◽  
William E. Uspal ◽  
Juliane Simmchen

Fluid flow is ubiquitous in many environments that form habitats for microorganisms. The tendency of organisms to navigate towards or away from flow is termed rheotaxis. Therefore, it is not surprising that both biological and artificial microswimmers show responses to flows that are determined by the interplay of chemical and physical factors. In particular, to deepen understanding of how different systems respond to flows, it is crucial to comprehend the influence played by swimming pattern. In recent studies, pusher-type Janus particles exhibited cross-stream migration in externally applied flows. Earlier, theoretical studies predicted a positive rheotactic response for puller-type spherical Janus micromotors. To compare to a different swimmer, we introduce Cu@SiO2 micromotors that swim towards their catalytic cap. Based on experimental observations, and supported by flow field calculations using a model for self-electrophoresis, we hypothesize that they behave effectively as a puller-type system. We investigate the effect of externally imposed flow on these spherically symmetrical Cu@SiO2 active Janus colloids, and we indeedobserve a steady upstream directional response. Through a simple squirmer model for a puller, we recover the major experimental observations. Additionally, the model predicts a unique “jumping” behaviour for puller-type micro- motors at high flow speeds. Performing additional experiments at high flow speeds, we capture this phenomenon, in which the particles “roll” with their swimming axes aligned to the shear plane, in addition to being dragged down- stream by the fluid flow.


Author(s):  
Santanu Mitra ◽  
Vaibhav Sehgal ◽  
Shubham Rathore ◽  
Raghav Puri ◽  
Shivani Chouhan ◽  
...  

Biomimetics aims to take inspiration from nature and develop new models and efficient systems for a sustainable future. Bioinspired underwater robotics help develop future submarines that will navigate through the water using flexible propulsor. This research has focused on the Manta Ray species as batoid has a unique advantage over other species. This study also aims to improve AUV (Autonomous Underwater Vehicle) efficiency through biomimetic design, the purpose of which is to observe and study the marine environment, be it for sea exploration or navigation. The design and prototyping process of bioinspired AUVs have been mentioned in this study, along with testing a propulsive mechanism for efficient swimming and turning capabilities. The Robot was designed taking structural considerations from the actual Manta-Ray locomotion and body design. The propulsion mechanism and control circuit were then implemented on the developed systems. The prototype of the Manta Ray was able to generate a realistic swimming pattern and was tested in an acrylic tank. The experimental results obtained in the tank basin are very close to the results we observe in the real-world scenario in terms of the vehicle's forward and turning motion.


2021 ◽  
Vol 8 (10) ◽  
pp. 218
Author(s):  
Ahmad Mohamadi Yalsuyi ◽  
Mohammad Forouhar Vajargah ◽  
Abdolmajid Hajimoradloo ◽  
Mohsen Mohammadi Galangash ◽  
Marko D. Prokić ◽  
...  

Pesticides can induce changes in behavior and reduce the survival chance of aquatic organisms. In this study, the toxic effects of glyphosate suspension (Glyphosate Aria 41% SL, Tehran Iran) on behavior and tissues of common carp (Cyprinus carpio) were assessed. For this purpose, a 96 h LC50 of glyphosate suspension (68.788 mL·L−1) was used in the toxicity test. All individuals were divided into control and treatment groups with four replicates. Exposure operations were performed under two conditions: increasing concentration of suspension from 0 to 68.788 mL·L−1; then, decreasing to the first level. The swimming pattern was recorded by digital cameras during the test and tissue samples were collected at the end of the test. There were significant differences between the swimming pattern of treated individuals and control ones during both steps. The sublethal concentration of glyphosate led to hypertrophy, hyperplasia and hyperemia in the gill of fish. However, changes were obvious only after sampling. The exposed fish also displayed clinical signs such as darkening of the skin and increasing movement of the operculum. Moreover, glyphosate suspension affected swimming patterns of fish suggest that the swimming behavior test can indicate the potential toxicity of environmental pollutants and be used as a noninvasive, useful method for managing environmental changes and assessing fish health conditions by video monitoring.


2021 ◽  
Author(s):  
Dilziba Kizghin ◽  
Sangjin Ryu ◽  
Younggil Park ◽  
Sunghwan Jung

Abstract Vorticella convallaria is a ciliated protozoan found in freshwater habitats. In the sessile or stalked trophont form, V. convallaria is shaped somewhat like a balloon as it has a body or zooid (the head of the balloon) that is about 40 μm large with cilia around its oral part, and a stalk (the string of a balloon) anchoring the zooid to a solid surface. When a trophont zooid of V. convallaria detached from the stalk, the zooid swims around in water by creating water flow using its oral cilia. In contrast to the stalk contraction of V. convallaria that has been well studied, the swimming motility of V. convallaria is little known. In this study, we measured the swimming trajectories of the stalkless trophont zooid of V. convallaria using video microscopy and Hele-Shaw cells with a gap height of 25 μm, traced the swimming zooid using image processing, and analyzed the swimming motion in terms of swimming velocity and mean square displacement. The stalkless trophont zooid of V . convallaria was found to swim in circular patterns with intermittent ballistic motions in the confinement, and the average swimming speed ranged from 20 μm/s to 110 μm/s. Since the swimming pattern of V. convallaria appeared to be affected by the level of confinement, we will continue characterizing the ciliate’s swimming in the Hele-Shaw cell with different gap heights. Our study is expected to reveal the swimming motility of V. convallaria and to advance general understanding of swimming of microorganisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Julian Schwanbeck ◽  
Ines Oehmig ◽  
Uwe Groß ◽  
Andreas E. Zautner ◽  
Wolfgang Bohne

Flagellar motility is important for the pathogenesis of many intestinal pathogens, allowing bacteria to move to their preferred ecological niche. Clostridioides difficile is currently the major cause for bacterial health care-associated intestinal infections in the western world. Most clinical strains produce peritrichous flagella and are motile in soft-agar. However, little knowledge exists on the C. difficile swimming behaviour and its regulation at the level of individual cells. We report here on the swimming strategy of C. difficile at the single cell level and its dependency on environmental parameters. A comprehensive analysis of motility parameters from several thousand bacteria was achieved with the aid of a recently developed bacterial tracking programme. C. difficile motility was found to be strongly dependent on the matrix elasticity of the medium. Long run phases of all four motile C. difficile clades were only observed in the presence of high molecular weight molecules such as polyvinylpyrrolidone (PVP) and mucin, which suggests an adaptation of the motility apparatus to the mucin-rich intestinal environment. Increasing mucin or PVP concentrations lead to longer and straighter runs with increased travelled distance per run and fewer turnarounds that result in a higher net displacement of the bacteria. The observed C. difficile swimming pattern under these conditions is characterised by bidirectional, alternating back and forth run phases, interrupted by a short stop without an apparent reorientation or tumbling phase. This motility type was not described before for peritrichous bacteria and is more similar to some previously described polar monotrichous bacteria.


2021 ◽  
Author(s):  
Shuchuang Dong ◽  
Sang-gyu Park ◽  
Jinxin Zhou ◽  
Qiao Li ◽  
Takero Yoshida ◽  
...  

Abstract The interaction between fluid and fish cage with stocked fish is extremely complex, including fluid and structure, as well as fluid and fish swimming behavior. The on-current swimming pattern of fish schools was found toward the incoming flow in the previous laboratory studies, which is different from the circular swimming pattern commonly observed in the farming site. In this study, a pseudo fish school structure model (PFS) was proposed to reproduce the five circular swimming patterns of farmed yellowtail, and to investigate the influence of fish school behaviors on the flow field inside and around a model square fish cage in laboratory experiments. The results showed that the drag force acting on the square fish cage increased with the increase of the current speed for all fish school swimming patterns, but no clear difference was observed between the fish school swimming behavior patterns. Overall, the drag force of the square fish cage considering the farmed fish behavior decreased by 11.8%, compared to the drag force of the fish cage without PFS. The current speeds inside and downstream of the fish cage increased almost linearly with increasing current velocities. Compared with the case of the fish cage without PFS, the current speed inside the cage under motionless closely PFS (C0), revolving closely PFS (CR), motionless loosely PFS (L0) and revolving loosely PFS (LR) conditions changed by 10.8%, 9.4%, 65.8% and 39.7%, respectively. In addition, compared to the case of the fish cage without PFS, the current speeds under C0, CR, L0 and LR conditions decreased by 89.8%, 16.3%, 58.2%, and 31.9%, respectively, at 16.0cm downstream from the fish cage, and decreased by 69.2%, 19.4%, 62.7% and 26.3%, respectively, at 63.6cm downstream from the fish cage. Furthermore, the current speed distribution and relative horizontal turbulence intensity distribution inside and around the fish cage under different fish school swimming pattern was discussed. In the future, we will use live fish to conduct experiments to evaluate fish school models.


2021 ◽  
Vol 9 (6) ◽  
pp. 1134
Author(s):  
Dawei Gao ◽  
Renjie Zong ◽  
Zhiwei Huang ◽  
Jingyang Ye ◽  
Hao Wang ◽  
...  

The chemotactic response regulator CheY, when phosphorylated by the phosphoryl group from phosphorylated CheA, can bind to the motor switch complex to control the flagellar motor rotation. Agrobacterium fabrum (previous name: Agrobacterium tumefaciens), a phytopathogen, carries two paralogous cheY genes, cheY1 and cheY2. The functional difference of two paralogous CheYs remains unclear. Three cheY-deletion mutants were constructed to test the effects of two CheYs on the chemotaxis of A. fabrum. Phenotypes of three cheY-deletion mutants show that deletion of each cheY significantly affects the chemotactic response, but cheY2-deletion possesses more prominent effects on the chemotactic migration and swimming pattern of A. fabrum than does cheY1-deletion. CheA-dependent cellular localization of two CheY paralogs and in vitro pull-down of two CheY paralogs by FliM demonstrate that the distinct roles of two CheY paralogs arise mainly from the differentiation of their binding affinities for the motor switch component FliM, agreeing with the divergence of the key residues on the motor-binding surface involved in the interaction with FliM. The single respective replacements of key residues R93 and A109 on the motor-binding surface of CheY2 by alanine (A) and valine (V), the corresponding residues of CheY1, significantly enhanced the function of CheY2 in regulating the chemotactic response of A. fabrum CheY-deficient mutant Δy to nutrient substances and host attractants. These results conclude that the divergence of the key residues in the functional subdomain is the decisive factor of functional differentiation of these two CheY homologs and protein function may be improved by the substitution of the divergent key residues in the functional domain for the corresponding residues of its paralogs. This finding will help us to better understand how paralogous proteins sub-functionalize. In addition, the acquirement of two CheY2 variants, whose chemotactic response functions are significantly improved, will be very useful for us to further explore the mechanism of CheY to bind and regulate the flagellar motor and the role of chemotaxis in the pathogenicity of A. fabrum.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elena E. Ganusova ◽  
Lam T. Vo ◽  
Tanmoy Mukherjee ◽  
Gladys Alexandre

Bacterial chemotaxis is the directed movement of motile bacteria in gradients of chemoeffectors. This behavior is mediated by dedicated signal transduction pathways that couple environment sensing with changes in the direction of rotation of flagellar motors to ultimately affect the motility pattern. Azospirillum brasilense uses two distinct chemotaxis pathways, named Che1 and Che4, and four different response regulators (CheY1, CheY4, CheY6, and CheY7) to control the swimming pattern during chemotaxis. Each of the CheY homologs was shown to differentially affect the rotational bias of the polar flagellum and chemotaxis. The role, if any, of these CheY homologs in swarming, which depends on a distinct lateral flagella system or in attachment is not known. Here, we characterize CheY homologs’ roles in swimming, swarming, and attachment to abiotic and biotic (wheat roots) surfaces and biofilm formation. We show that while strains lacking CheY1 and CheY6 are still able to navigate air gradients, strains lacking CheY4 and CheY7 are chemotaxis null. Expansion of swarming colonies in the presence of gradients requires chemotaxis. The induction of swarming depends on CheY4 and CheY7, but the cells’ organization as dense clusters in productive swarms appear to depend on functional CheYs but not chemotaxis per se. Similarly, functional CheY homologs but not chemotaxis, contribute to attachment to both abiotic and root surfaces as well as to biofilm formation, although these effects are likely dependent on additional cell surface properties such as adhesiveness. Collectively, our data highlight distinct roles for multiple CheY homologs and for chemotaxis on swarming and attachment to surfaces.


2021 ◽  
Author(s):  
Takashi Hara ◽  
Shuya Hasegawa ◽  
Yasushi Iwatani ◽  
Atsuo S. Nishino

Swimming locomotion in aquatic vertebrates, such as fish and tadpoles, is expressed through orchestrated operations of central pattern generators. These parallel neuronal circuits are ubiquitously distributed and mutually coupled along the spinal cord to express undulation patterns accommodated to efferent and afferent inputs. While such sets of schemes have been shown in vertebrates, the evolutionary origin of those mechanisms along the chordate phylogeny remains unclear. Ascidians, representing a sister group of vertebrates, give rise to tadpole larvae that freely swim in seawater. In this study, we tried to locate the swimming pattern generator in larvae of the ascidian Ciona by examining locomotor ability of segmented body fragments. Our experiments demonstrated necessary and sufficient pattern generator activity in a short region (~10% of the body length as the longest estimation) including the trunk-tail junction but excluding most of the trunk and tail with major sensory apparatuses therein. Moreover, we found that these "mid-piece" body fragments express periodic tail beating bursts with ~20-s intervals without any exogenous stimuli. Comparisons among temporal patterns of tail beating bursts expressed by the mid-piece fragments and by whole larvae placed under different sensory conditions suggested that the presence of parts other than the critical mid-piece had effects to shorten swimming burst intervals, especially in the dark, and also to expand the variance in burst durations. We propose that Ciona larvae perform swimming as modified representations of autonomous and periodic pattern generator drives, which operate locally in the region of the trunk-tail junction.


Sign in / Sign up

Export Citation Format

Share Document