scholarly journals Natural Negative-Refractive-Index Materials

2021 ◽  
Vol 127 (23) ◽  
Author(s):  
Chih-Yu Chen ◽  
Ming-Chien Hsu ◽  
C. D. Hu ◽  
Yeu Chung Lin
2005 ◽  
Vol 45 (4) ◽  
pp. 294-295 ◽  
Author(s):  
Aaron D. Scher ◽  
Christopher T. Rodenbeck ◽  
Kai Chang

2013 ◽  
Vol 30 (4) ◽  
pp. 1077 ◽  
Author(s):  
Alexander O. Korotkevich ◽  
Kathryn E. Rasmussen ◽  
Gregor Kovačič ◽  
Victor Roytburd ◽  
Andrei I. Maimistov ◽  
...  

2016 ◽  
Vol 30 (07) ◽  
pp. 1650088
Author(s):  
Valeriy M. Ishchuk ◽  
Vladimir Sobolev

In this paper, a possibility of use of the controlled decomposition of solid solutions of oxides with perovskite structure in the state of coexisting domains of the antiferroelectric (AFE) and ferroelectric (FE) phases for manufacturing materials with the negative refractive index is demonstrated. The lead zirconate titanate-based solid solutions are considered as an example of substances suitable for creation of such materials. Manufactured composites constitute a dielectric AFE matrix with a structure of conducting interphase boundaries separating domains of the FE and AFE phases. The electric conductivity of the interphase boundaries occurs as a result of the local decomposition of the solid solutions in the vicinity of these boundaries. The decomposition process and consequently the conductivity of the interphase boundaries can be controlled by means of external influences.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Rashed Iqbal Faruque ◽  
Air Mohammad Siddiky ◽  
Eistiak Ahamed ◽  
Mohammad Tariqul Islam ◽  
Sabirin Abdullah

AbstractThe electromagnetic properties of the metal based dielectric in the field of millimeter and sub-millimeter technology attracts a new era for innovation. In this research work, we have introduced a parallel LC shaped metamaterial resonator with wider bandwidth. The negative refractive index for two resonant frequencies is located from the negative permittivity from 5.1 to 6.3, 10.4 to 12.9 GHz, where the negative refractive index is located from 5.4 to 6.3 and 10.5 to 13.5 GHz. The electromagnetic wave polarizing in the proposed structure with parallel LC shaped metallic structure shows a fascinating response of wider bandwidth for the external electric and magnetic field. This paper focuses on the design of conducting layer for the suggested design with the parallel metallic arm for analysing the mutual coupling effect of the scattering response where the sub-branch in metallic design is shown more resonant frequencies with the enhancement of the compactness. This proposed structure is analysed with different metallic arrangements and array structures for different boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document