conducting layer
Recently Published Documents


TOTAL DOCUMENTS

242
(FIVE YEARS 37)

H-INDEX

20
(FIVE YEARS 4)

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3450
Author(s):  
Suci Winarsih ◽  
Faisal Budiman ◽  
Hirofumi Tanaka ◽  
Tadashi Adachi ◽  
Akihiro Koda ◽  
...  

The nano-size effects of high-Tc cuprate superconductor La2−xSrxCuO4 with x = 0.20 are investigated using X-ray diffractometry, Transmission electron microscopy, and muon-spin relaxation (μSR). It is investigated whether an increase in the bond distance of Cu and O atoms in the conducting layer compared to those of the bulk state might affect its physical and magnetic properties. The μSR measurements revealed the slowing down of Cu spin fluctuations in La2−xSrxCuO4 nanoparticles, indicating the development of a magnetic correlation at low temperatures. The magnetic correlation strengthens as the particle size reduces. This significantly differs from those observed in the bulk form, which show a superconducting state below Tc. It is indicated that reducing the particle size of La2−xSrxCuO4 down to nanometer size causes the appearance of magnetism. The magnetism enhances with decreasing particle size.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1431
Author(s):  
Gieun Kim ◽  
Songeun Hong ◽  
Suho Yoo ◽  
Jongwoon Park

We investigated the photochromic (PC) and electrochromic (EC) properties of tin-doped nickel oxide (NiO) thin films for solution-processable all-solid-state EC devices. The PC effect is shown to be enhanced by the addition of Sn into the precursor NiO solution. We fabricated an EC device with six layers—ITO/TiO2 (counter electrode)/SnO2 (ion-conducting layer)/SiO2 (barrier)/NiO doped with tin (EC layer)/ITO—by a hybrid fabrication process (sputtering for ITO and TiO2, sol–gel spin coating for SnO2 and NiO). The EC effect was also observed to be improved with the Sn-doped NiO layer. It was demonstrated that UV/O3 treatment is one of the critical processes that determine the EC performance of the hydroxide ion-based device. UV/O3 treatment generates hydroxide ions, induces phase separation from a single mixture of SnO2 and silicone oil, and improves the surface morphology of the films, thereby boosting the performance of EC devices. EC performance can be enhanced further by optimizing the thickness of TiO2 and SiO2 layers. Specifically, the SiO2 barrier blocks the transport of charges, bringing in an increase in anodic coloration. We achieved the transmittance modulation of 38.3% and the coloration efficiency of 39.7 cm2/C. We also evaluated the heat resistance of the all-solid-state EC device and found that the transmittance modulation was decreased by 36% from its initial value at 100 °C. Furthermore, we demonstrated that a large-area EC device can be fabricated using slot-die coating without much compromise on EC performance.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012062
Author(s):  
A A Nikolskaya ◽  
D S Korolev ◽  
A N Mikhaylov ◽  
T D Mullagaliev ◽  
Yu I Chigirinsky ◽  
...  

Abstract Synthesis and modification of gallium oxide as a wide-bandgap semiconductor is a topical task in the fields of power electronics, UV detectors, gas sensors, telecommunication. In the present work, the Ga2O3 films deposited on sapphire substrates by magnetron sputtering have been studied. The influence of deposition parameters and subsequent annealing on the structure and optical properties of the synthesized films is analyzed. Ion doping of magnetron-deposited films with silicon is carried out by the ion implantation method. It is shown by the Raman scattering and optical transmission spectroscopy that ion irradiation leads to the disordering of the crystal structure, but subsequent annealing results in a partial recovery of the structure. Hall-effect measurements for irradiated and then annealed films do not reveal the formation of a conducting layer. Apparently, this is due to the fact that the main contribution to the resistance is made by grain boundaries in the magnetron-deposited films.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Rashed Iqbal Faruque ◽  
Air Mohammad Siddiky ◽  
Eistiak Ahamed ◽  
Mohammad Tariqul Islam ◽  
Sabirin Abdullah

AbstractThe electromagnetic properties of the metal based dielectric in the field of millimeter and sub-millimeter technology attracts a new era for innovation. In this research work, we have introduced a parallel LC shaped metamaterial resonator with wider bandwidth. The negative refractive index for two resonant frequencies is located from the negative permittivity from 5.1 to 6.3, 10.4 to 12.9 GHz, where the negative refractive index is located from 5.4 to 6.3 and 10.5 to 13.5 GHz. The electromagnetic wave polarizing in the proposed structure with parallel LC shaped metallic structure shows a fascinating response of wider bandwidth for the external electric and magnetic field. This paper focuses on the design of conducting layer for the suggested design with the parallel metallic arm for analysing the mutual coupling effect of the scattering response where the sub-branch in metallic design is shown more resonant frequencies with the enhancement of the compactness. This proposed structure is analysed with different metallic arrangements and array structures for different boundary conditions.


2021 ◽  
Author(s):  
Beatriz Sanchez-Cano

<p>The ionosphere of Mars is the conducting layer embedded within the thermosphere and exosphere that is mostly the result of solar EUV photoionization. It is also the layer that links the neutral atmosphere with space, and acts as the main obstacle to the solar wind. The ionosphere’s interaction with the solar wind is a critical aspect that determines the Martian atmospheric evolution, and ultimately the planet’s habitability. This interaction is often referred to as planetary Space Weather, the forecast of which is currently challenging due to the lack of a permanent in-situ solar wind monitor at Mars. Understanding the ionospheric response to solar wind variability is, therefore, essential in order to assess the response of the Martian plasma environment to the dissipation of energy from solar storms, and their impact on current technology deployed on the red planet.</p><p>This lecture will focus on our current knowledge of the Martian ionosphere. In particular, I will focus on our recent advances in the understanding of the Martian ionospheric reaction to different Space Weather events during the solar cycle, both from the data analysis and ionospheric modelling perspectives. Some important aspects to consider are the bow shock, magnetic pileup boundary, and ionopause characterization, as well as the behaviour of the topside and bottomside of the ionosphere taking into account the planet’s orbital eccentricity. Moreover, I will show the effect of electron precipitation from large Space Weather events in the very low Martian ionosphere, a region that it is not accessible to in-situ spacecraft observations. Finally, I will conclude the presentation by giving my perspective on some of the key outstanding questions that remain unknown, and I consider they constitute the next generation of Mars’ ionospheric science and exploration.</p><p> </p>


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1001
Author(s):  
Kazuha Sakaguchi ◽  
Biao Zhou ◽  
Yuki Idobata ◽  
Hajime Kamebuchi ◽  
Akiko Kobayashi

In order to develop new types of single-component molecular conductors with novel electronic structures and physical properties, the neutral gold dithiolate complex with an etdt (= ethylenedithiotetrathiafulvalenedithiolate) ligand, [Au(etdt)2] was prepared. However, unlike the reported single-component molecular metals, the neutral gold complex [Au(etdt)2]·THF (2) contains a solvent molecule of tetrahydrofuran (THF). The crystals of 2 form a two-dimensional conducting layer structure, which are separated by the terminal ethylene groups and THF molecules. The fairly high room-temperature conductivity of 0.2 S/cm and semiconducting behavior with a low activation energy of 0.1 eV of 2, is consistent with the result of the density functional theory band structure calculations. The observed non-magnetic behavior of 2 is caused from the dimeric structure of [Au(etdt)2] molecules.


Sign in / Sign up

Export Citation Format

Share Document