scholarly journals Interaction of Argon Clusters with Intense VUV-Laser Radiation: The Role of Electronic Structure in the Energy-Deposition Process

2004 ◽  
Vol 92 (14) ◽  
Author(s):  
T. Laarmann ◽  
A. R. B. de Castro ◽  
P. Gürtler ◽  
W. Laasch ◽  
J. Schulz ◽  
...  
2021 ◽  
Vol 23 (12) ◽  
pp. 7418-7425
Author(s):  
Magdalena Laurien ◽  
Himanshu Saini ◽  
Oleg Rubel

We calculate the band alignment of the newly predicted phosphorene-like puckered monolayers with G0W0 according to the electron affinity rule and examine trends in the electronic structure. Our results give guidance for heterojunction design.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Thomas Thiebault ◽  
Laëtitia Fougère ◽  
Anaëlle Simonneau ◽  
Emilie Destandau ◽  
Claude Le Milbeau ◽  
...  

AbstractThis study investigated the potential of sediments accumulated in sewer systems to record human activities through the occurrence of drug target residues (DTR). The installation studied is 17 m deep underground decantation tank that traps the coarse fractions of a unitary sewer system (northern part of Orléans, France), collecting both stormwater and wastewater. The sediments deposited in this tank could constitute a nonesuch opportunity to study the historical evolution of illicit and licit drug consumption in the catchment, however, the deposition processes and the record of DTRs remain largely unknown at present. Five cores were acquired from 2015 to 2017. One hundred fifty-two sediment samples were extracted using a mixture of ultra-pure water:methanol (1:1) prior to analysis of the extracts by high-pressure liquid chromatography coupled to tandem mass spectrometry. Several classical sedimentological analyses such as total organic carbon, facies description and granulometry were also performed on these samples, in order to understand the most important factors (e.g., physico-chemical properties of the DTRs, solid type, assumed load in wastewater) impacting their deposition.The key role of the speciation of DTRs was highlighted by the higher contents in neutral and anionic DTRs in organic layers, whereas only cationic DTRs were found in mineral layers. The considerable modifications in the sediments’ properties, generated by distinct origins (i.e., stormwater or wastewater), are therefore the most important drivers that must be taken into account when back-calculating the historical patterns of drug consumption from their DTR concentrations in decantation tank sediments. Further research remains necessary to fully understand the deposition process, but this study provides new clues explaining these temporal evolutions.


2021 ◽  
Vol 67 (4) ◽  
pp. 1229-1242
Author(s):  
Shuhao Wang ◽  
Lida Zhu ◽  
Yichao Dun ◽  
Zhichao Yang ◽  
Jerry Ying Hsi Fuh ◽  
...  

2001 ◽  
Vol 90 (2) ◽  
pp. 292-301 ◽  
Author(s):  
I. M. Belousova ◽  
V. A. Grigor’ev ◽  
O. B. Danilov ◽  
A. G. Kalintsev ◽  
A. V. Kris’ko ◽  
...  

2016 ◽  
Vol 18 (45) ◽  
pp. 30946-30953 ◽  
Author(s):  
Damien Magne ◽  
Vincent Mauchamp ◽  
Stéphane Célérier ◽  
Patrick Chartier ◽  
Thierry Cabioc'h

The role of the surface groups in chemical bonding in two dimensional Ti3C2is evidenced at the nano-object level.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
A. D’Elia ◽  
S. J. Rezvani ◽  
N. Zema ◽  
F. Zuccaro ◽  
M. Fanetti ◽  
...  

AbstractWe present and discuss the role of nanoparticles size and stoichiometry over the local atomic environment of nanostructured VOx films. The samples have been characterized in situ using X-ray absorption near-edge structure (XANES) spectroscopy identifying the stoichiometry-dependent fingerprints of disordered atomic arrangement. In vanadium oxides, the ligand atoms arrange according to a distorted octahedral geometry depending on the oxidation state, e.g. trigonal distortion in V2O3 and tetragonal distortion in bulk VO2. We demonstrate, taking VO2 as a case study, that as a consequence of the nanometric size of the nanoparticles, the original ligands symmetry of the bulk is broken resulting in the coexistence of a continuum of distorted atomic conformations. The resulting modulation of the electronic structure of the nanostructured VOx as a function of the oxygen content reveals a stoichiometry-dependent increase of disorder in the ligands matrix. This work shows the possibility to produce VOx nanostructured films accessing new disordered phases and provides a unique tool to investigate the complex matter.


Sign in / Sign up

Export Citation Format

Share Document