scholarly journals Test of the Stokes-Einstein Relation in a Two-Dimensional Yukawa Liquid

2006 ◽  
Vol 96 (1) ◽  
Author(s):  
Bin Liu ◽  
J. Goree ◽  
O. S. Vaulina
2019 ◽  
Vol 11 (22) ◽  
pp. 6392 ◽  
Author(s):  
Sanaz Momeni Boroujeni ◽  
Kai Peter Birke

Detecting or predicting lithium plating in Li-ion cells and subsequently suppressing or preventing it have been the aim of many researches as it directly contributes to the aging, safety, and life-time of the cell. Although abundant influencing parameters on lithium deposition are already known, more information is still needed in order to predict this phenomenon and prevent it in time. It is observed that balancing in a Li-ion cell can play an important role in controlling lithium plating. In this work, five regions are defined with the intention of covering all the zones participating in the charge transfer from one electrode to the other during cell cycling. We employ a pseudo two-dimensional (P2D) cell model including two irreversible side reactions of solid electrolyte interface (SEI) formation and lithium plating (Li-P) as the anode aging mechanisms. With the help of simulated data and the Nernst–Einstein relation, ionic conductivities of the regions are calculated separately. Calculation results show that by aging the cell, more deviation between ionic conductivities of cathode and anode takes place which leads to the start of Li plating.


1981 ◽  
Vol 63 (2) ◽  
pp. 737-742 ◽  
Author(s):  
D. Tjapkin ◽  
V. Milanović ◽  
Ž. Spasojević

1966 ◽  
Vol 24 ◽  
pp. 118-119
Author(s):  
Th. Schmidt-Kaler

I should like to give you a very condensed progress report on some spectrophotometric measurements of objective-prism spectra made in collaboration with H. Leicher at Bonn. The procedure used is almost completely automatic. The measurements are made with the help of a semi-automatic fully digitized registering microphotometer constructed by Hög-Hamburg. The reductions are carried out with the aid of a number of interconnected programmes written for the computer IBM 7090, beginning with the output of the photometer in the form of punched cards and ending with the printing-out of the final two-dimensional classifications.


1966 ◽  
Vol 24 ◽  
pp. 3-5
Author(s):  
W. W. Morgan

1. The definition of “normal” stars in spectral classification changes with time; at the time of the publication of theYerkes Spectral Atlasthe term “normal” was applied to stars whose spectra could be fitted smoothly into a two-dimensional array. Thus, at that time, weak-lined spectra (RR Lyrae and HD 140283) would have been considered peculiar. At the present time we would tend to classify such spectra as “normal”—in a more complicated classification scheme which would have a parameter varying with metallic-line intensity within a specific spectral subdivision.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Sign in / Sign up

Export Citation Format

Share Document