scholarly journals Two-Dimensional Quantum-Link Lattice Quantum Electrodynamics at Finite Density

2020 ◽  
Vol 10 (4) ◽  
Author(s):  
Timo Felser ◽  
Pietro Silvi ◽  
Mario Collura ◽  
Simone Montangero
NANO ◽  
2007 ◽  
Vol 02 (01) ◽  
pp. 1-13 ◽  
Author(s):  
BONG-SHIK SONG ◽  
TAKASHI ASANO ◽  
SUSUMU NODA

This paper presents a review on the selected highlights of highly-functional devices in two-dimensional photonic crystals slab structure. By introducing artificial defects in the photonic crystals (that is, defect engineering), novel photonic devices of line-defect waveguides and point-defect nanocavity are demonstrated. For more efficient manipulation of photons, the fundamentals of heterostructure photonic crystals are also reviewed. Heterostructures consist of multiple photonic crystals with different lattice-constants and they provide further high-functionalities such as multiple wavelength operation while maintaining optimized performance and the enhancement of photon manipulation efficiency. Because of the importance of high quality (Q) nanocavity for realization of nanophotonic devices, we also review the design rule of high Q nanocavities and present recent experiments on nanocavities with Q factors in excess of one million (~ 1.2 × 106). The progress of defect engineering and heterostructure in two-dimensional photonic crystals slab structure will accelerate development in ultrasmall photonic chips, cavity quantum electrodynamics, optical sensors, etc.


2014 ◽  
Vol 23 (06) ◽  
pp. 1460006 ◽  
Author(s):  
V. S. Olkhovsky

The formal mathematical analogy between time-dependent quantum equation for the nonrelativistic particles and time-dependent equation for the propagation of electromagnetic waves had been studied in [A. I. Akhiezer and V. B. Berestezki, Quantum Electrodynamics (FM, Moscow, 1959) [in Russian] and S. Schweber, An Introduction to Relativistic Quantum Field Theory, Chap. 5.3 (Row, Peterson & Co, Ill, 1961)]. Here, we deal with the time-dependent Schrödinger equation for nonrelativistic particles and with time-dependent Helmholtz equation for electromagnetic waves. Then, using this similarity, the tunneling and multiple internal reflections in one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) particle and photon tunneling are studied. Finally, some conclusions and future perspectives for further investigations are presented.


1995 ◽  
Vol 75 (5) ◽  
pp. 938-941 ◽  
Author(s):  
N. Elstner ◽  
A. Sokol ◽  
R. R. P. Singh ◽  
M. Greven ◽  
R. J. Birgeneau

2021 ◽  
Vol 2015 (1) ◽  
pp. 012088
Author(s):  
Y. Marques ◽  
I. A. Shelykh ◽  
I. V. Iorsh

Abstract We consider a two-dimensional extension of the one-dimensional waveguide quantum electrodynamics and investigate the nature of linear excitations in two-dimensional arrays of qubits (particularly, semiconductor quantum dots) coupled to networks of chiral waveguides. We show that the combined effects of chirality and long-range photon mediated qubit-qubit interactions lead to the emergence of the two-dimensional flat bands in the polaritonic spectrum, corresponding to slow strongly correlated light.


Sign in / Sign up

Export Citation Format

Share Document