scholarly journals Metabolome Phenotyping of Inorganic Carbon Limitation in Cells of the Wild Type and Photorespiratory Mutants of the Cyanobacterium Synechocystis sp. Strain PCC 6803

2008 ◽  
Vol 148 (4) ◽  
pp. 2109-2120 ◽  
Author(s):  
Marion Eisenhut ◽  
Jan Huege ◽  
Doreen Schwarz ◽  
Hermann Bauwe ◽  
Joachim Kopka ◽  
...  
2007 ◽  
Vol 144 (4) ◽  
pp. 1946-1959 ◽  
Author(s):  
Marion Eisenhut ◽  
Eneas Aguirre von Wobeser ◽  
Ludwig Jonas ◽  
Hendrik Schubert ◽  
Bas W. Ibelings ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Stefan Lucius ◽  
Alexander Makowka ◽  
Klaudia Michl ◽  
Kirstin Gutekunst ◽  
Martin Hagemann

Cyanobacteria perform plant-like oxygenic photosynthesis to convert inorganic carbon into organic compounds and can also use internal carbohydrate reserves under specific conditions. A mutant collection with defects in different routes for sugar catabolism was studied to analyze which of them is preferentially used to degrade glycogen reserves in light-exposed cells of Synechocystis sp. PCC 6803 shifted from high to low CO2 conditions. Mutants defective in the glycolytic Embden–Meyerhof–Parnas pathway or in the oxidative pentose-phosphate (OPP) pathway showed glycogen levels similar to wild type under high CO2 (HC) conditions and were able to degrade it similarly after shifts to low CO2 (LC) conditions. In contrast, the mutant Δeda, which is defective in the glycolytic Entner-Doudoroff (ED) pathway, accumulated elevated glycogen levels under HC that were more slowly consumed during the LC shift. In consequence, the mutant Δeda showed a lowered ability to respond to the inorganic carbon shifts, displayed a pronounced lack in the reactivation of growth when brought back to HC, and differed significantly in its metabolite composition. Particularly, Δeda accumulated enhanced levels of proline, which is a well-known metabolite to maintain redox balances via NADPH levels in many organisms under stress conditions. We suggest that deletion of eda might promote the utilization of the OPP shunt that dramatically enhance NADPH levels. Collectively, the results point at a major regulatory contribution of the ED pathway for the mobilization of glycogen reserves during rapid acclimation to fluctuating CO2 conditions.


2008 ◽  
Vol 190 (24) ◽  
pp. 8234-8237 ◽  
Author(s):  
Shulu Zhang ◽  
Kevin W. Spann ◽  
Laurie K. Frankel ◽  
James V. Moroney ◽  
Terry M. Bricker

ABSTRACT Insertional transposon mutations in the sll0804 and slr1306 genes were found to lead to a loss of optimal photoautotrophy in the cyanobacterium Synechocystis sp. strain PCC 6803 grown under ambient CO2 concentrations (350 ppm). Mutants containing these insertions (4BA2 and 3ZA12, respectively) could grow photoheterotrophically on glucose or photoautotrophically at elevated CO2 concentrations (50,000 ppm). Both of these mutants exhibited an impaired affinity for inorganic carbon. Consequently, the Sll0804 and Slr1306 proteins appear to be putative components of the carbon-concentrating mechanism in Synechocystis sp. strain PCC 6803.


Sign in / Sign up

Export Citation Format

Share Document