scholarly journals The Entner-Doudoroff Pathway Contributes to Glycogen Breakdown During High to Low CO2 Shifts in the Cyanobacterium Synechocystis sp. PCC 6803

2021 ◽  
Vol 12 ◽  
Author(s):  
Stefan Lucius ◽  
Alexander Makowka ◽  
Klaudia Michl ◽  
Kirstin Gutekunst ◽  
Martin Hagemann

Cyanobacteria perform plant-like oxygenic photosynthesis to convert inorganic carbon into organic compounds and can also use internal carbohydrate reserves under specific conditions. A mutant collection with defects in different routes for sugar catabolism was studied to analyze which of them is preferentially used to degrade glycogen reserves in light-exposed cells of Synechocystis sp. PCC 6803 shifted from high to low CO2 conditions. Mutants defective in the glycolytic Embden–Meyerhof–Parnas pathway or in the oxidative pentose-phosphate (OPP) pathway showed glycogen levels similar to wild type under high CO2 (HC) conditions and were able to degrade it similarly after shifts to low CO2 (LC) conditions. In contrast, the mutant Δeda, which is defective in the glycolytic Entner-Doudoroff (ED) pathway, accumulated elevated glycogen levels under HC that were more slowly consumed during the LC shift. In consequence, the mutant Δeda showed a lowered ability to respond to the inorganic carbon shifts, displayed a pronounced lack in the reactivation of growth when brought back to HC, and differed significantly in its metabolite composition. Particularly, Δeda accumulated enhanced levels of proline, which is a well-known metabolite to maintain redox balances via NADPH levels in many organisms under stress conditions. We suggest that deletion of eda might promote the utilization of the OPP shunt that dramatically enhance NADPH levels. Collectively, the results point at a major regulatory contribution of the ED pathway for the mobilization of glycogen reserves during rapid acclimation to fluctuating CO2 conditions.

2007 ◽  
Vol 144 (4) ◽  
pp. 1946-1959 ◽  
Author(s):  
Marion Eisenhut ◽  
Eneas Aguirre von Wobeser ◽  
Ludwig Jonas ◽  
Hendrik Schubert ◽  
Bas W. Ibelings ◽  
...  

2008 ◽  
Vol 148 (4) ◽  
pp. 2109-2120 ◽  
Author(s):  
Marion Eisenhut ◽  
Jan Huege ◽  
Doreen Schwarz ◽  
Hermann Bauwe ◽  
Joachim Kopka ◽  
...  

2008 ◽  
Vol 190 (24) ◽  
pp. 8234-8237 ◽  
Author(s):  
Shulu Zhang ◽  
Kevin W. Spann ◽  
Laurie K. Frankel ◽  
James V. Moroney ◽  
Terry M. Bricker

ABSTRACT Insertional transposon mutations in the sll0804 and slr1306 genes were found to lead to a loss of optimal photoautotrophy in the cyanobacterium Synechocystis sp. strain PCC 6803 grown under ambient CO2 concentrations (350 ppm). Mutants containing these insertions (4BA2 and 3ZA12, respectively) could grow photoheterotrophically on glucose or photoautotrophically at elevated CO2 concentrations (50,000 ppm). Both of these mutants exhibited an impaired affinity for inorganic carbon. Consequently, the Sll0804 and Slr1306 proteins appear to be putative components of the carbon-concentrating mechanism in Synechocystis sp. strain PCC 6803.


2004 ◽  
Vol 186 (23) ◽  
pp. 8144-8148 ◽  
Author(s):  
Terry M. Bricker ◽  
Shulu Zhang ◽  
Susan M. Laborde ◽  
Paul R. Mayer ◽  
Laurie K. Frankel ◽  
...  

ABSTRACT A mutation was recovered in the slr0721 gene, which encodes the decarboxylating NADP+-dependent malic enzyme in the cyanobacterium Synechocystis sp. strain PCC 6803, yielding the mutant 3WEZ. Under continuous light, 3WEZ exhibits poor photoautotrophic growth while growing photoheterotrophically on glucose at rates nearly indistinguishable from wild-type rates. Interestingly, under diurnal light conditions (12 h of light and 12 h of dark), normal photoautotrophic growth of the mutant is completely restored.


2020 ◽  
Vol 477 (7) ◽  
pp. 1309-1321
Author(s):  
Shoki Ito ◽  
Takashi Osanai

Metabolite production from carbon dioxide using sugar catabolism in cyanobacteria has been in the spotlight recently. Synechocystis sp. PCC 6803 (Synechocystis 6803) is the most studied cyanobacterium for metabolite production. Previous in vivo analyses revealed that the oxidative pentose phosphate (OPP) pathway is at the core of sugar catabolism in Synechocystis 6803. However, the biochemical regulation of the OPP pathway enzymes in Synechocystis 6803 remains unknown. Therefore, we characterized a key enzyme of the OPP pathway, glucose-6-phosphate dehydrogenase (G6PDH), and related enzymes from Synechocystis 6803. Synechocystis 6803 G6PDH was inhibited by citrate in the oxidative tricarboxylic acid (TCA) cycle. Citrate has not been reported as an inhibitor of G6PDH before. Similarly, 6-phosphogluconate dehydrogenase, the other enzyme from Synechocystis 6803 that catalyzes the NADPH-generating reaction in the OPP pathway, was inhibited by citrate. To understand the physiological significance of this inhibition, we characterized succinic semialdehyde dehydrogenase (SSADH) from Synechocystis 6803 (SySSADH), which catalyzes one of the NAD(P)H generating reactions in the oxidative TCA cycle. Similar to isocitrate dehydrogenase from Synechocystis 6803, SySSADH specifically catalyzed the NADPH-generating reaction and was not inhibited by citrate. The activity of SySSADH was lower than that of other bacterial SSADHs. Previous and this studies revealed that unlike the OPP pathway, the oxidative TCA cycle is a pathway with low efficiency in NADPH generation in Synechocystis 6803. It has, thus, been suggested that to avoid NADPH overproduction, the OPP pathway dehydrogenase activity is repressed when the flow of the oxidative TCA cycle increases in Synechocystis 6803.


2000 ◽  
Vol 55 (11-12) ◽  
pp. 927-942 ◽  
Author(s):  
Dirk Paul Stephan ◽  
Hans Georg Ruppel ◽  
Elfriede K. Pistorius

ʟ Ultrastructural and imm unocytochemical investigations gave evidence that cyanophycin (multi--arginyl-poly-ʟ-aspartate) granules accumulate in the cyanobacterium Synechocystis sp. strain PCC 6803 under nutrient deficient growth conditions, especially under phosphate limitation. Besides nutrient deficiency, growth of Synechocystis PCC 6803 on ʟ-arginine or ʟ-asparagine as sole N-source also led to high increase of cyanophycin synthesis, while growth on the combination of ʟ-arginine or ʟ-asparagine with nitrate only caused minor cyanophycin accum ulation. Growth of Synechocystis PCC 6803 on ʟ-arginine as sole N-source caused substantial morphological and physiological changes, such as severe thylakoid membrane degradation with partial loss of pigments and photosynthetic activity leading to a phenotype almost like that seen under nutrient deficiency. In contrast to the wild type, the PsbO-free Synechocystis PCC 6803 mutant could grow on ʟ-arginine as sole N-source with only minor morphological and physiological changes. Due to its fairly balanced growth, the mutant accumulated only few cyanophycin granules. ʟ-arginine degrading activity (measured as ornithine and ammonium formation) was high in the PsbO-free mutant but not in the wild type when cells were grown on ʟ-arginine as sole N-source. In both cells types the ʟ-arginine degrading activity was high (although in the PsbO-free mutant about twice as high as in wild type), when cells were grown on ʟ-arginine in combination with nitrate, and as expected very low when cells were grown on nitrate as sole N-source. Thus, net cyanophycin accumulation in Synechocystis PCC 6803 is regulated by the relative concentration of ʟ-arginine to the total nitrogen pool, and the intracellular ʟ-arginine concentration is greatly influenced by the activity of the ʟ-arginine degrading enzyme system which in part is regulated by the activity status of photosystem II. These results suggest a complex interrelation between cyanophycin synthesis, ʟ-arginine catabolism , and in addition photosynthesis in Synechocystis PCC 6803.


2017 ◽  
Vol 12 (1) ◽  
pp. 156-161
Author(s):  
Ciprian Chiş ◽  
Dalton Carmel ◽  
luliana Chiş ◽  
Aurel Ardelean ◽  
Nicolae Dragos ◽  
...  

AbstractIn almost all cyanobacteria a small gene family encodes the photosystem II reaction center D1 proteins that play vital roles in the cell. Recently, several types of this protein were functionally characterised and the conditions for their transcript regulation were identified. One of the D1-encoding genes previously believed to be silent is induced by microaerobic conditions. This gene was first described in Synechocystis sp. PCC 6803 as psbA1 encoding the D1 isoform. When Synechocystis cells are shifted from high to ambient level CO2 we recorded an increase in gene expression, similar, but to a lesser extent, to microaerobic conditions. When synthetic air is used to remove the ambient CO2, the induction of the gene is absent. We documented for the first time that expression of a psbA gene is regulated by the inorganic carbon status of the cell. Our conclusion is that both CO2 and microaerobic conditions are independently influencing the expression of psbA1 gene in Synechocystis sp. PCC 6803. Hence, it is crucial to understand the mechanisms of regulation and function of D1 proteins as it could be used for future bio-technological applications as a virtual tool-box for modulating the function of PSII.


2012 ◽  
Vol 78 (17) ◽  
pp. 6349-6351 ◽  
Author(s):  
Lawrence E. Page ◽  
Michelle Liberton ◽  
Himadri B. Pakrasi

ABSTRACTTruncation of the algal light-harvesting antenna is expected to enhance photosynthetic productivity. The wild type and three mutant strains ofSynechocystissp. strain 6803 with a progressively smaller phycobilisome antenna were examined under different light and CO2conditions. Surprisingly, such antenna truncation resulted in decreased whole-culture productivity for this cyanobacterium.


Sign in / Sign up

Export Citation Format

Share Document