scholarly journals Multiscale Metabolic Modeling: Dynamic Flux Balance Analysis on a Whole-Plant Scale

2013 ◽  
Vol 163 (2) ◽  
pp. 637-647 ◽  
Author(s):  
E. Grafahrend-Belau ◽  
A. Junker ◽  
A. Eschenroder ◽  
J. Muller ◽  
F. Schreiber ◽  
...  
2020 ◽  
Vol 117 (10) ◽  
pp. 3006-3017 ◽  
Author(s):  
Carolina Shene ◽  
Paris Paredes ◽  
Liset Flores ◽  
Allison Leyton ◽  
Juan A. Asenjo ◽  
...  

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Gong-Hua Li ◽  
Shaoxing Dai ◽  
Feifei Han ◽  
Wenxing Li ◽  
Jingfei Huang ◽  
...  

Abstract Background Constraint-based metabolic modeling has been applied to understand metabolism related disease mechanisms, to predict potential new drug targets and anti-metabolites, and to identify biomarkers of complex diseases. Although the state-of-art modeling toolbox, COBRA 3.0, is powerful, it requires substantial computing time conducting flux balance analysis, knockout analysis, and Markov Chain Monte Carlo (MCMC) sampling, which may limit its application in large scale genome-wide analysis. Results Here, we rewrote the underlying code of COBRA 3.0 using C/C++, and developed a toolbox, termed FastMM, to effectively conduct constraint-based metabolic modeling. The results showed that FastMM is 2~400 times faster than COBRA 3.0 in performing flux balance analysis and knockout analysis and returns consistent outputs. When applied to MCMC sampling, FastMM is 8 times faster than COBRA 3.0. FastMM is also faster than some efficient metabolic modeling applications, such as Cobrapy and Fast-SL. In addition, we developed a Matlab/Octave interface for fast metabolic modeling. This interface was fully compatible with COBRA 3.0, enabling users to easily perform complex applications for metabolic modeling. For example, users who do not have deep constraint-based metabolic model knowledge can just type one command in Matlab/Octave to perform personalized metabolic modeling. Users can also use the advance and multiple threading parameters for complex metabolic modeling. Thus, we provided an efficient and user-friendly solution to perform large scale genome-wide metabolic modeling. For example, FastMM can be applied to the modeling of individual cancer metabolic profiles of hundreds to thousands of samples in the Cancer Genome Atlas (TCGA). Conclusion FastMM is an efficient and user-friendly toolbox for large-scale personalized constraint-based metabolic modeling. It can serve as a complementary and invaluable improvement to the existing functionalities in COBRA 3.0. FastMM is under GPL license and can be freely available at GitHub site: https://github.com/GonghuaLi/FastMM.


2012 ◽  
Vol 110 (3) ◽  
pp. 792-802 ◽  
Author(s):  
K. Höffner ◽  
S. M. Harwood ◽  
P. I. Barton

2010 ◽  
Vol 12 (2) ◽  
pp. 150-160 ◽  
Author(s):  
Adam L. Meadows ◽  
Rahi Karnik ◽  
Harry Lam ◽  
Sean Forestell ◽  
Brad Snedecor

2014 ◽  
Vol 22 (03) ◽  
pp. 327-338 ◽  
Author(s):  
CAROL MILENA BARRETO-RODRIGUEZ ◽  
JESSICA PAOLA RAMIREZ-ANGULO ◽  
JORGE MARIO GOMEZ RAMIREZ ◽  
LUKE ACHENIE ◽  
HAROLD MOLINA-BULLA ◽  
...  

The advent of numerous technological platforms for genome sequencing has led to increasing understanding and construction of metabolic networks. A popular system engineering strategy is used to analyze microbial metabolic networks is flux balance analysis (FBA). In recent times, there has been a lot of interest in the study of the metabolic network dynamics when genes are overexpressed in the system. Herein, an optimization framework, which employs dynamic flux balance analysis (DFBA) is proposed for predicting ethanol concentration profiles in glycerol fermentations using Escherichia coli. In silico results were experimentally validated by overexpressing alcohol/acetaldehyde dehydrogenase adhE, pyruvate kinase pykF, pyruvate formate-lyase pflB and isoleucine-valine enzymes ilvC and llvL.


Sign in / Sign up

Export Citation Format

Share Document