scholarly journals Sensing of Osmotic Pressure Changes in Tomato Cells

2000 ◽  
Vol 124 (3) ◽  
pp. 1169-1180 ◽  
Author(s):  
Georg Felix ◽  
Martin Regenass ◽  
Thomas Boller
1978 ◽  
Vol 44 (2) ◽  
pp. 254-257 ◽  
Author(s):  
Y. Kakiuchi ◽  
A. B. DuBois ◽  
D. Gorenberg

Hansen's membrane manometer method for measuring plasma colloid osmotic pressure was used to obtain the osmolality changes of dogs breathing different levels of CO2. Osmotic pressure was converted to osmolality by calibration of the manometer with saline and plasma, using freezing point depression osmometry. The addition of 10 vol% of CO2 to tonometered blood caused about a 2.0 mosmol/kg H2O increase of osmolality, or 1.2% increase of red blood cell volume. The swelling of the red blood cells was probably due to osmosis caused by Cl- exchanged for the HCO3- which was produced rapidly by carbonic anhydrase present in the red blood cells. The change in colloid osmotic pressure accompanying a change in co2 tension was measured on blood obtained from dogs breathing different CO2 mixtures. It was approximately 0.14 mosmol/kg H2O per Torr Pco2. The corresponding change in red cell volume could not be calculated from this because water can exchange between the plasma and tissues.


1956 ◽  
Vol 33 (3) ◽  
pp. 493-501
Author(s):  
G. A. KERKUT ◽  
B. J. R. TAYLOR

1. The effects of different dilutions of Locke solution on the electrical activity of the isolated pedal ganglion of the slug can be reproduced by adding different concentrations of glucose of mannitol to a given concentration of Locke. 2. This indicates that certain cells in the pedal ganglion are sensitive to the osmotic pressure of the solution and not its ionic concentration. 3. The preparation is sensitive to slow changes in the concentration of the bathing medium. The cells increased their activity when the bathing solution was slowly changed from 0.7 Locke to 0.6 Locke, the change taking 43 min. This corresponds approximately to a change of 1% of the body fluid concentration over 4 min. Such rates of change are found in the normal intact animal. 4. The sensitivity of the preparation compares well with that of the mammalian osmoreceptors.


1985 ◽  
Vol 5 (3) ◽  
pp. 96
Author(s):  
B. Gonik ◽  
D. Cotton ◽  
T. Spillman ◽  
E. Abouleish ◽  
F. Zavisca ◽  
...  

1983 ◽  
Vol 213 (1) ◽  
pp. 131-136 ◽  
Author(s):  
C C Curtain ◽  
F D Looney ◽  
D L Regan ◽  
N M Ivancic

Changes in the ordering and motion of lipids in response to changes in the external solute concentration have been studied by using the 5-nitroxide stearate (5NS) and 16-nitroxide stearate (16NS) spin probes in the plasma membrane of the halotolerant unicellular alga Dunaliella salina. Increases in ordering of the 5NS probe and decreases in motion of the 16NS probe were observed in cells equilibrated over 18 h at increasing NaCl concentrations. These changes probably resulted from the influence of the high NaCl concentration on the charged phospholipid head groups of the membrane. A short-term (less than 100 min) decrease in the order parameter, S, of the 5NS probe was observed for cells swollen by exposure to a sudden decrease of NaCl concentration from 5.0 to 2.5 M. After 100 min the value of S for 5NS was close to the value obtained in cells that had been equilibrated in 2.5 M-NaCl for 18 h. Since the cells had regained their original size and shape by 100 min it was assumed that the short-term decrease in S was associated with the swelling. A similar result was obtained when the cells were suddenly changed from 3.0 M- to 1.5 M-sorbitol. Conversely, an increase in S was observed for cells shrunk when the external solute concentration was doubled from 1.5 M- to 3.0 M-NaCl. As the cells regained their original size and shape the value of S decreased to the value observed in cells that had been equilibrated in 3.0 M-NaCl for 18 h. It is suggested that the changes in S are related to the movement of lipid into or out of a reservoir of membrane material as the membrane shrinks or expands. This movement of lipid maintains the tension of the membrane below the value at which it is disrupted. Such changes in lipid ordering could provide a mechanism whereby information about external osmotic-pressure changes is transmitted across the cell wall.


Author(s):  
R. F. H. Freeman ◽  
F. H. Rigler

The osmotic pressure of the blood of Scrobicularia plana has been measured when the animal is exposed to diluted sea water, and observations made on the behaviour of the animal when exposed to solutions of different osmotic pressure.The blood osmotic pressure shows no significant difference to that of the external medium except in very low salinities. The external medium with which an animal in its natural habitat comes into equilibrium is represented by the water above the mud rather than the water contained in the mud. Open animals equilibrate to 80% sea water in 4–5 h and to 60% sea water in 5–6 h. The osmotic pressure of the blood of animals that remain closed in dilute media is decreased by as little as 1·5% per hour.


1985 ◽  
Vol 5 (3) ◽  
pp. 96
Author(s):  
B. Gonik ◽  
D. Cotton ◽  
T. Spillman ◽  
E. Abouleish ◽  
F. Zavisca ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document