The responses of Scrobicularia plana (da Costa) to osmotic pressure changes

Author(s):  
R. F. H. Freeman ◽  
F. H. Rigler

The osmotic pressure of the blood of Scrobicularia plana has been measured when the animal is exposed to diluted sea water, and observations made on the behaviour of the animal when exposed to solutions of different osmotic pressure.The blood osmotic pressure shows no significant difference to that of the external medium except in very low salinities. The external medium with which an animal in its natural habitat comes into equilibrium is represented by the water above the mud rather than the water contained in the mud. Open animals equilibrate to 80% sea water in 4–5 h and to 60% sea water in 5–6 h. The osmotic pressure of the blood of animals that remain closed in dilute media is decreased by as little as 1·5% per hour.

Author(s):  
Sandra E. Shumway

Specimens of Pagurus bernhardus (with and without shells) were exposed to both gradual (sinusoidal) and abrupt (square-wave) salinity fluctuations and changes in haemolymph osmolality, tissue water content and oxygen consumption monitored. Oxygen consumption was also monitored under steady-state conditions; under these conditions there was no significant difference between the rate of oxygen consumption by animals with shells and animals without shells. Oxygen consumption was found to vary with body weight according to the equation O2 consumption = 0·292 W0·668. During exposure to fluctuating salinities the crabs with shells were seen to increase loco-motory activity when the external medium declined to approximately 75% sea water. Haemolymph osmolality values followed the same pattern of change as the external medium; the haemolymph of crabs without shells became significantly more dilute during exposure to low salinity than did that of crabs with shells. P. bernhardus showed significant increases and decreases in hydration level as salinities fell and rose respectively. Crabs with shells showed a marked temporary increase in oxygen consumption when the external medium declined to approximately 75% sea water; crabs without shells showed no such response. The importance of the shell as a means of protection against dilute media is discussed.


1952 ◽  
Vol 29 (1) ◽  
pp. 1-21
Author(s):  
A. D. HOBSON ◽  
W. STEPHENSON ◽  
L. C. BEADLE

1. The total osmotic pressure, electrical conductivity and chloride concentration of the body fluid of Ascaris lumbricoides and of the intestinal contents of the pig have been measured. 2. The results obtained agree with the observations of previous workers that Ascaris normally lives in a hypertonic medium and that it swells or shrinks in saline media which are too dilute or too concentrated. 3. Experiments comparing the behaviour of normal and ligatured animals show that both the body wall and the wall of the alimentary canal are surfaces through which water can pass. 4. 30% sea water has been used as a balanced saline medium for keeping the worms alive in the laboratory. This concentration was selected as being the one in which there was least change in the body weight of the animals exposed to it. 5. The osmotic pressure of the body fluid of worms kept in 30% sea water is approximately the same as in animals taken directly from the pig's intestine. The body fluid of fresh worms is hypertonic to 30% sea water and hypotonic to the intestinal fluid. In 30% sea water the normal osmotic gradient across the body wall is therefore reversed. 6. In 30% sea water the total ionic concentration (as measured by the conductivity) decreases slightly, but the chloride concentration increases by about 50%, although still remaining much below that of the external medium. 7. Experiments in which the animals were allowed to come into equilibrium with various concentrations of sea water from 20 to 40% show that there are corresponding changes in the osmotic pressure of the body fluid which is, however, always slightly above that of the saline medium. The conductivity also changes in a similar manner but is always less than that of the medium, and the difference between the two becomes progressively greater the more concentrated the medium. 8. The chloride concentration of the body fluid varies with but is always below that of the external medium, whether this is intestinal fluid or one of the saline media. In the latter the difference between the internal and external chloride concentrations is least in 20% sea water and becomes progressively greater as the concentration of the medium is increased. 9. Experiments with ligatured worms and with eviscerated cylinders of the body wall show that these share the capacity of the normal worm to maintain the chloride concentration of the body fluid below that of the environment. This power is not possessed by cylinders composed of the cuticle alone. 10. If the worms which have had their internal chloride concentration raised by exposure to 30% sea water are transferred to a medium composed of equal volumes of 30% sea water and isotonic sodium nitrate solution, the chloride concentration of the body fluid is reduced to a value below that of the external medium. This phenomenon is also displayed by worms ligatured after removal from the 30% sea water and, to an even more marked degree, by eviscerated cylinders of the body wall. 11. It is concluded that Ascaris is able to maintain the chloride concentration of the body fluid below that of the external medium by an process of chloride excretion against a concentration gradient, and that this mechanism is resident in the body wall, the cuticle being freely permeable to chloride.


1948 ◽  
Vol 25 (4) ◽  
pp. 421-436
Author(s):  
J. A. KITCHING

1. On transfer from sea water to dilute sea water, the marine peritrich ciliate Vorticella marina swells more rapidly at higher temperatures. 2. It is concluded that the permeability of the surface of V. marina to water is influenced by temperature, with a Q10 of very roughly 2·5-3·2. 3. The body volume of the fresh-water peritrich ciliate Carchesium aselli is maintained approximately constant when the organism is transferred to solutions of sucrose of concentrations up to about 0·04 M; in higher concentrations the organism shrinks. 4. The rate of output of the contractile vacuole of C. aselli decreases with increasing concentrations of sucrose in the external medium; the rate of output is very low in 0·05 M-sucrose. 5. From a consideration of the effects of sucrose solutions on the body volume and on the rate of vacuolar output it is concluded that the initial osmotic pressure of C. aselli normally exceeds that of the external pond water by about 0·04-0·05 M non-electrolyte. 6. The internal osmotic pressure of C. aselli is not materially increased by increase of temperature. 7. It is concluded that the increase in rate of vacuolar output, which accompanies increase of temperature, counterbalances an increased rate of osmotic uptake of water from the external medium, and that this increased rate of uptake is due to an effect of temperature on the permeability of the surface through which the water enters. 8. The rate of vacuolar output is temporarily much increased when C. aselli, which has been equilibrated in solutions of ethylene glycol, is returned to pond water. 9. It is suggested that the temperature and the osmotic pressure of the external solution largely determine the osmotic stress which is imposed on the organism, and that they thus influence the state of hydration of the protoplasm; in turn this may be supposed to determine the activity of the contractile vacuole.


Author(s):  
N. Kesava Panikkar

1. The brackish-water prawn Palaemonetes varians and the marine prawns Leander serratus and L. squilla are hypotonic in normal sea water, the blood of these species showing osmotic pressures equivalent to 2·3, 2·8 and 2·6 % NaCl respectively, in an external medium of 3·5 % NaCl.2. Palaemonetes varians is isotonic in water of about 2·0 % NaCl and the species is practically homoiosmotic, the difference in its osmotic pressure over a range of 5·0 % NaCl in the external medium being only 0·8–1·0 %. The species has a very wide range of tolerance from water that is nearly fresh to concentrated sea water equivalent to 5·2 % NaCl.3. Leander serratus is much less homoiosmotic than Palaemonetes, and has a limited tolerance to dilution and concentration of the environment. Homoiosmoticity is maintained up to a dilution of 2·5 % in the external medium when isotonicity is reached; but in lower dilutions there is a steady decline in osmotic pressure and the regulatory mechanism evidently breaks down.4. The osmotic behaviour of Leander squilla is very similar to that of L. serratus, but the homoiosmotic behaviour is more marked and it has greater tolerance to dilution of the environment.5. When Leander and Palaemonetes are transferred to very dilute sea water, the internal osmotic pressure falls gradually for about 14–24 hr., varying according to the size of the individual. After the lowest value has been registered there is a slight rise, and a steady state is thereafter maintained.6. Studies on the changes of weight of prawns when transferred to diluted media indicate that the integument (gills) is permeable to water and that, at least in Leander serratus, the amount of water entering is mainly responsible for the dilution of the blood. There is a similar fall in weight when prawns are transferred to concentrated media, due to loss of water.


Author(s):  
R. F. H. Freeman ◽  
T. J. Shuttleworth

Recent studies on the osmotic responses of marine invertebrates to dilution of the external medium have tended to emphasize the osmotic and ionic regulation at the intracellular level rather than at blood/body fluid level. Even in those invertebrates, principally euryhaline crustaceans, possessing osmoregulatory mechanisms which enable them to maintain concentrations of the blood above those of dilute media, the regulation is not perfect, and there is some lowering of the blood concentration below the level exhibited in full-strength sea water (Lockwood, 1962). This requires the establishment of a new osmotic equilibrium between the intracellular solutes and those of the blood. The nature of the intracellular osmotic constituents is, however, strikingly different from those of the blood, even in those invertebrates which are stenohaline and purely marine in their distribution (Robertson, 1961). The osmotic pressure of the blood is due almost entirely to the same inorganic electrolytes as are present in sea water, although the percentage contribution of the various ions may differ. On the other hand these inorganic ions account for only about one third to one half of the intracellular osmotic pressure. The remainder is accounted for by organic solutes, most particularly free amino acids.


Author(s):  
A. G. Lowndes ◽  
N. K. Panikkar

One of the lobsters kept in the tanks of the Plymouth Laboratory moulted on the night of 2 0 August 1940. This opportunity was taken to examine the changes in water content and osmotic pressure of the freshly moulted as compared with unmoulted lobsters. Though only one recently moulted individual has been examined, the results seem to be worthy of note since so far as we are aware no data are available on the subject in regard to Homarus. The biology of moulting among lobsters has received the attention of many investigators (vide Herrick (1895) and Drach (1939) for summary and literature).The water content was determined by distilling the fresh lobster together with a known weight of sea water under xylol. This method is a modification of that of Dean and Stark which one of us (A. G. L.) has tried on a number of animals and found to give accurate results. The density was estimated by a modification of a method previously described (Lowndes, 1938). Osmotic pressure of blood and the external medium were measured by Baldes's (1934) modification of the Hill thermoelectric technique, as employed by one of us (N. K. P.) in the study of prawns and other crustaceans. The water content of the moulted skin was calculated from its dry weight taken after dehydrating in a hot air oven for 48 hr. at 105° C. Osmotic pressure was measured 17±6 hr. after moult; density and water content after 34±6hr. The temperature of sea water at which the density was estimated was 17° C.


2017 ◽  
Vol 5 (2) ◽  
pp. 1
Author(s):  
Mulyati Mulyati ◽  
Suryati Suryati ◽  
Irfani Baga

The study aims to isolate, characterize, and examine probiotic bacteria's inhibitory ability against Vibrio harveyi bacteria, both in-vitro and in vivo. Methods used in the study consist of 1) An Isolation of Candidate Probiotic Bacteria, 2) An Antagonistic Test of Candidate Probiotic Bacteria in vitro, 3) An Identification of Bacteria, 4) A Pathogenicity Test of Candidate Probiotic Bacteria, 5) An Antagonistic Test of Candidate Probiotic Bacteria against V. harveyi in vivo. According to the isolation of candidate probiotic bacteria, there are 18 isolated candidate probiotic. After being tested for its inhibitory ability in vitro, there are 8 isolates with zone of inhibition as follows: isolate MM 7 from intestine (22 mm), isolate MM 6 from intestine (12 mm), isolate MM 10 from sea water (10 mm), isolate MM 5 from intestine (9 mm), isolate MM 4 from intestine (8 mm), isolate MM 3 from intestine (7 mm), isolate MM 2.2 from intestine (7 mm), isolate MM 2.1 from intestine (7 mm). Eight genera of the candidate probiotic bacteria is derived from Portunid crab, they are Staphylococcus, Streptococcus, bacillus, vibrio, Alcaligenes, Lactobacillus, micrococcus. Before proceeding the V. harveyi bacterial challenge test in vivo, three potential isolates consisting of MM6, MM7 and MM10 as the probiotic bacteria are pathogenicity-tested against V. harveyi. The survival rate of Portunid crab on pathogenicity test using MM6, MM7 and MM10 generates 91.11-100%, while the control generates 100% survival rate. Variance analysis result through post-hoc Tukey's Honest Significant Difference (HSD) test at 95% confidence interval indicates that isolate MM7 and MM10 are significantly able to increase hatchling Portunid crab's survival rate.


1978 ◽  
Vol 44 (2) ◽  
pp. 254-257 ◽  
Author(s):  
Y. Kakiuchi ◽  
A. B. DuBois ◽  
D. Gorenberg

Hansen's membrane manometer method for measuring plasma colloid osmotic pressure was used to obtain the osmolality changes of dogs breathing different levels of CO2. Osmotic pressure was converted to osmolality by calibration of the manometer with saline and plasma, using freezing point depression osmometry. The addition of 10 vol% of CO2 to tonometered blood caused about a 2.0 mosmol/kg H2O increase of osmolality, or 1.2% increase of red blood cell volume. The swelling of the red blood cells was probably due to osmosis caused by Cl- exchanged for the HCO3- which was produced rapidly by carbonic anhydrase present in the red blood cells. The change in colloid osmotic pressure accompanying a change in co2 tension was measured on blood obtained from dogs breathing different CO2 mixtures. It was approximately 0.14 mosmol/kg H2O per Torr Pco2. The corresponding change in red cell volume could not be calculated from this because water can exchange between the plasma and tissues.


1977 ◽  
Vol 66 (1) ◽  
pp. 97-110
Author(s):  
T. J. Bradley ◽  
J. E. Phillips

1. The drinking rate of the saline-water mosquito larva Aedes taeniorhyncus (100 nl.mg-1.h-1) is unaffected by the salinity of the external medium, but is directly proportional to the surface area of the animal. 2. Haemolymph Na+, Mg2+, K+, Cl-, SO42- and osmotic concentrations were measured in larvae adapted to 10%, 100% and 200% seawater and were found to be regulated within a narrow range. 3. With the exception of potassium, ionic concentrations in rectal secretion were found to increase with increasing concentrations of the sea water in which larvae were reared. 4. The osmotic concentration of rectal secretion was unaffected by changes in haemolymph osmotic concentration but did rise when sodium or chloride concentrations of the haemolymph were increased. High levels of these ions also stimulated the rate of fluid secretion. 5. Transport of chloride and sodium by the rectum exhibits the kinetics of allosteric rather than classical enzymes.


Sign in / Sign up

Export Citation Format

Share Document