scholarly journals SlFERL Interacts with S-Adenosylmethionine Synthetase to Regulate Fruit Ripening

2020 ◽  
Vol 184 (4) ◽  
pp. 2168-2181
Author(s):  
Dongchao Ji ◽  
Xiaomin Cui ◽  
Guozheng Qin ◽  
Tong Chen ◽  
Shiping Tian
1990 ◽  
Vol 265 (23) ◽  
pp. 13683-13686
Author(s):  
S. Horikawa ◽  
J. Sasuga ◽  
K. Shimizu ◽  
H. Ozasa ◽  
K. Tsukada

Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1455-1462
Author(s):  
José L Barra ◽  
Mario R Mautino ◽  
Alberto L Rosa

eth-1r a thermosensitive allele of the Neurospora crassa S-adenosylmethionine (AdoMet) synthetase gene that confers ethionine resistance, has been cloned and sequenced. Replacement of an aspartic amino acid residue (D48 → N48), perfectly conserved in prokaryotic, fungal and higher eukaryotic AdoMet synthetases, was found responsible for both thermosensitivity and ethionine resistance conferred by eth-1r. Gene fusion constructs, designed to overexpress eth-1r in vivo, render transformant cells resistant to ethionine. Dominance of ethionine resistance was further demonstrated in eth-1  +/eth-1r partial diploids carrying identical gene doses of both alleles. Heterozygous eth-1  +/eth-1r cells have, at the same time, both the thermotolerance conferred by eth-1  + and the ethionine-resistant phenotype conferred by eth-1r. AdoMet levels and AdoMet synthetase activities were dramatically decreased in heterozygous eth-1  +/eth-1r cells. We propose that this negative effect exerted by eth-1r results from the in vivo formation of heteromeric eth-1  +/eth-1r AdoMet synthetase molecules.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Weihao Wang ◽  
Peiwen Wang ◽  
Xiaojing Li ◽  
Yuying Wang ◽  
Shiping Tian ◽  
...  

AbstractLight plays a critical role in plant growth and development, but the mechanisms through which light regulates fruit ripening and nutritional quality in horticultural crops remain largely unknown. Here, we found that ELONGATED HYPOCOTYL 5 (HY5), a master regulator in the light signaling pathway, is required for normal fruit ripening in tomato (Solanum lycopersicum). Loss of function of tomato HY5 (SlHY5) impairs pigment accumulation and ethylene biosynthesis. Transcriptome profiling identified 2948 differentially expressed genes, which included 1424 downregulated and 1524 upregulated genes, in the Slhy5 mutants. In addition, genes involved in carotenoid and anthocyanin biosynthesis and ethylene signaling were revealed as direct targets of SlHY5 by chromatin immunoprecipitation. Surprisingly, the expression of a large proportion of genes encoding ribosomal proteins was downregulated in the Slhy5 mutants, and this downregulation pattern was accompanied by a decrease in the abundance of ribosomal proteins. Further analysis demonstrated that SlHY5 affected the translation efficiency of numerous ripening-related genes. These data indicate that SlHY5 regulates fruit ripening both at the transcriptional level by targeting specific molecular pathways and at the translational level by affecting the protein translation machinery. Our findings unravel the regulatory mechanisms of SlHY5 in controlling fruit ripening and nutritional quality and uncover the multifaceted regulation of gene expression by transcription factors.


Sign in / Sign up

Export Citation Format

Share Document