scholarly journals The Arabidopsis Putative G Protein–Coupled Receptor GCR1 Interacts with the G Protein α Subunit GPA1 and Regulates Abscisic Acid Signaling

2004 ◽  
Vol 16 (6) ◽  
pp. 1616-1632 ◽  
Author(s):  
Sona Pandey ◽  
Sarah M. Assmann
Science ◽  
2007 ◽  
Vol 318 (5852) ◽  
pp. 914c-914c ◽  
Author(s):  
C. A. Johnston ◽  
B. R. Temple ◽  
J.-G. Chen ◽  
Y. Gao ◽  
E. N. Moriyama ◽  
...  

2019 ◽  
Vol 46 (6) ◽  
pp. 596
Author(s):  
P. Anunanthini ◽  
V. M. Manoj ◽  
T. S. Sarath Padmanabhan ◽  
S. Dhivya ◽  
J. Ashwin Narayan ◽  
...  

The G protein-coupled receptor is one of the major transmembrane proteins in plants. It consists of an α subunit, a β subunit and three γ subunits. Chilling tolerant divergence 1 (COLD1) includes a Golgi pH receptor (GPHR) domain, which maintains cell membrane organisation and dynamics, along with abscisic acid linked G protein-coupled receptor (ABA_GPCR) that regulates the signalling pathways during cold stress. In the present study, we performed characterisation of a homologous COLD1 from the economically important monocot species Oryza sativa L., Zea mays L., Sorghum bicolor (L.)Moench and Erianthus arundinaceus (L.) Beauv. IK 76-81, a wild relative of Saccharum. COLD1 was isolated from E. arundinaceus IK 76-81, analysed for its evolution, domain, membrane topology, followed by prediction of secondary, tertiary structures and functionally validated in all four different monocots. Gene expression studies of COLD1 revealed differential expression under heat, drought, salinity and cold stresses in selected monocots. This is the first study on regulation of native COLD1 during abiotic stress in monocots, which has opened up new leads for trait improvement strategies in this economically important crop species.


2019 ◽  
Vol 46 (6) ◽  
pp. 524 ◽  
Author(s):  
P. Anunanthini ◽  
V. M. Manoj ◽  
T. S. Sarath Padmanabhan ◽  
S. Dhivya ◽  
J. Ashwin Narayan ◽  
...  

The G protein-coupled receptor is one of the major transmembrane proteins in plants. It consists of an α subunit, a β subunit and three γ subunits. Chilling tolerant divergence 1 (COLD1) includes a Golgi pH receptor (GPHR) domain, which maintains cell membrane organisation and dynamics, along with abscisic acid linked G protein-coupled receptor (ABA_GPCR) that regulates the signalling pathways during cold stress. In the present study, we performed characterisation of a homologous COLD1 from the economically important monocot species Oryza sativa L., Zea mays L., Sorghum bicolor (L.)Moench and Erianthus arundinaceus (L.) Beauv. IK 76-81, a wild relative of Saccharum. COLD1 was isolated from E. arundinaceus IK 76-81, analysed for its evolution, domain, membrane topology, followed by prediction of secondary, tertiary structures and functionally validated in all four different monocots. Gene expression studies of COLD1 revealed differential expression under heat, drought, salinity and cold stresses in selected monocots. This is the first study on regulation of native COLD1 during abiotic stress in monocots, which has opened up new leads for trait improvement strategies in this economically important crop species.


2008 ◽  
Vol 29 (2) ◽  
pp. 435-447 ◽  
Author(s):  
Ryouhei Tsutsumi ◽  
Yuko Fukata ◽  
Jun Noritake ◽  
Tsuyoshi Iwanaga ◽  
Franck Perez ◽  
...  

ABSTRACT The heterotrimeric G protein α subunit (Gα) is targeted to the cytoplasmic face of the plasma membrane through reversible lipid palmitoylation and relays signals from G-protein-coupled receptors (GPCRs) to its effectors. By screening 23 DHHC motif (Asp-His-His-Cys) palmitoyl acyl-transferases, we identified DHHC3 and DHHC7 as Gα palmitoylating enzymes. DHHC3 and DHHC7 robustly palmitoylated Gαq, Gαs, and Gαi2 in HEK293T cells. Knockdown of DHHC3 and DHHC7 decreased Gαq/11 palmitoylation and relocalized it from the plasma membrane into the cytoplasm. Photoconversion analysis revealed that Gαq rapidly shuttles between the plasma membrane and the Golgi apparatus, where DHHC3 specifically localizes. Fluorescence recovery after photobleaching studies showed that DHHC3 and DHHC7 are necessary for this continuous Gαq shuttling. Furthermore, DHHC3 and DHHC7 knockdown blocked the α1A-adrenergic receptor/Gαq/11-mediated signaling pathway. Together, our findings revealed that DHHC3 and DHHC7 regulate GPCR-mediated signal transduction by controlling Gα localization to the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document