X-ray diffraction from perfect silicon crystals distorted by surface acoustic waves

2000 ◽  
Vol 33 (4) ◽  
pp. 1019-1022 ◽  
Author(s):  
R. Tucoulou ◽  
R. Pascal ◽  
M. Brunel ◽  
O. Mathon ◽  
D. V. Roshchupkin ◽  
...  

High-resolution X-ray diffraction measurements were carried out on ZnO/Si devices under surface acoustic wave excitation and revealed some very clear satellite diffraction peaks that are obtained from the sinusoidal modulation of the near-surface region. This experiment shows that the propagation of a Rayleigh surface acoustic wave in a perfect crystal acts as a dynamical diffraction grating. The variation of the acoustic velocity has been followed across the crystal surface from the acoustic source region (beneath the ZnO film) to the far field region (not covered by the ZnO film).

2017 ◽  
Vol 50 (2) ◽  
pp. 525-530 ◽  
Author(s):  
Simone Vadilonga ◽  
Ivo Zizak ◽  
Dmitry Roshchupkin ◽  
Emelin Evgenii ◽  
Andrei Petsiuk ◽  
...  

X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La3Ga5SiO14) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space–time modulation of an X-ray beam.


2016 ◽  
Vol 49 (6) ◽  
pp. 2073-2081 ◽  
Author(s):  
Ludovic Largeau ◽  
Ibrahima Camara ◽  
Jean-Yves Duquesne ◽  
Catherine Gourdon ◽  
Pauline Rovillain ◽  
...  

Surface acoustic waves of micrometre wavelength travelling on a monocrystal give diffraction satellites around each Bragg peak in an X-ray diffraction diagram. By using a four-crystal monochromator, a secondary two-crystal analyser and masks reducing the footprint to the part of the crystal containing the acoustic modulation, it is possible to observe these satellites on a GaAs (001) surface using a laboratory diffractometer. The finite extension of the satellite diffraction rods and of the crystal truncation rod perpendicular to the surface leads to geometrical correction factors when convoluted with the instrumental resolution function, which had previously been ignored. The calculation of these geometrical correction factors in the framework of the kinematic approximation allows the determination of the surface acoustic wave amplitude, and the study of its attenuation and its dependence on radiofrequency power and duty cycle. The ability to perform such determinations with a laboratory diffractometer should prove useful in optimizing surface acoustic waves, which are presently used in a broad range of condensed matter physics studies.


Micromachines ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Alexander Kukaev ◽  
Dmitry Lukyanov ◽  
Denis Mikhailenko ◽  
Daniil Safronov ◽  
Sergey Shevchenko ◽  
...  

Originally, sensors based on surface acoustic waves are fabricated using photolithography, which becomes extremely expensive when a small series or even single elements are needed for the research. A laser thin film local evaporation technique is proposed to substitute the photolithography process in the production of surface acoustic wave based inertial sensors prototypes. To estimate its potential a prototype of a surface acoustic wave gyroscope sensing element was fabricated and tested. Its was shown that the frequency mismatch is no more than 1%, but dispersion of the wave on small inertial masses leads to a spurious parasitic signal on receiving electrodes. Possible ways of its neglecting is discussed.


AIP Advances ◽  
2013 ◽  
Vol 3 (7) ◽  
pp. 072127 ◽  
Author(s):  
T. Reusch ◽  
F. Schülein ◽  
C. Bömer ◽  
M. Osterhoff ◽  
A. Beerlink ◽  
...  

Author(s):  
Emil ZOLOTOYABKO ◽  
Eli JACOBSOHN ◽  
Dan SHECHTMAN ◽  
Benjamin KANTOR ◽  
Joseph SALZMAN

2005 ◽  
Vol 97 (11) ◽  
pp. 113505 ◽  
Author(s):  
R. Tucoulou ◽  
O. Mathon ◽  
C. Ferrero ◽  
V. Mocella ◽  
D. V. Roshchupkin ◽  
...  

Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 794 ◽  
Author(s):  
Huang ◽  
Hu ◽  
Han ◽  
Lei ◽  
Yang

One of the reasons why commercial application of surface acoustic wave (SAW) atomization is not possible is due to the condensation of aerosol droplets generated during atomization, which drip on the interdigitated transducer (IDT), thereby causing electrodes to short-circuit. In order to solve this problem, a SU-8-2002 film coating on an IDT is proposed in this paper. The waterproof performance of the film coating was tested on a surface acoustic wave (SAW) device several times. The experimental results reveal that the film coating was robust. The experiment also investigated the effects of the SU-8-2002 film on atomization behavior and heating.


2013 ◽  
Vol 7 (2) ◽  
pp. 211-220 ◽  
Author(s):  
Kun Chen ◽  
◽  
Xing Fu ◽  
Dante J. Dorantes-Gonzalez ◽  
Yanning Li ◽  
...  

In this paper, the principle of surface acoustic wave techniques and their application to the monitoring of cracks are presented and compared to other classic non-destructive techniques. A practical classification of methods regarding the excitation and detection of surface acoustic waves is enumerated, among them, laser-generated surface acoustic wave technique is carefully analyzed as a prospective technique, and two important detection methods using piezoelectric and light deflection are described. Then, the strategies and variables used in crack monitoring based on laser-generated surface acoustic wave technique are reviewed. To achieve the goal of quantitative detection of cracks, most researchers use numerical models and experiments to characterize main crack features. Discussions and prospective approaches for further quantitative monitoring of cracks are provided.


1993 ◽  
Vol 73 (12) ◽  
pp. 8647-8649 ◽  
Author(s):  
E. Zolotoyabko ◽  
E. Jacobsohn ◽  
D. Shechtman ◽  
B. Kantor ◽  
J. Salzman

Sign in / Sign up

Export Citation Format

Share Document