acoustic wave device
Recently Published Documents


TOTAL DOCUMENTS

285
(FIVE YEARS 31)

H-INDEX

22
(FIVE YEARS 3)

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2630
Author(s):  
Federica Barbaresco ◽  
Luisa Racca ◽  
Luca Spigarelli ◽  
Matteo Cocuzza ◽  
Simone Luigi Marasso ◽  
...  

This work illustrates focalization performances of a silicon-based bulk acoustic wave device applied for the separation of specimens owing to micrometric dimensions. Samples are separated in the microfluidic channel by the presence of an acoustic field, which focalizes particles or cells according to their mechanical properties compared to the surrounded medium ones. Design and fabrication processes are reported, followed by focalization performance tests conducted either with synthetic particles or cells. High focalization performances occurred at different microparticle concentrations. In addition, preliminary tests carried out with HL-60 cells highlighted an optimal separation performance at a high flow rate and when cells are mixed with micro and nanoparticles without affecting device focalization capabilities. These encouraging results showed how this bulk acoustic wave device could be exploited to develop a diagnostic tool for early diagnosis or some specific target therapies by separating different kinds of cells or biomarkers possessing different mechanical properties such as shapes, sizes and densities.


2021 ◽  
pp. 2141004
Author(s):  
Walter Water ◽  
Yu-Zhen Shi

The TiO2 thin film was grown on a [Formula: see text] Y-axis cut, X-axis propagation lithium niobate substrate by radio frequency magnetron sputtering to fabricate a surface acoustic wave device. The sputtering ratios of argon to oxygen at 20% and post-annealing temperature at [Formula: see text]C for 3 h were controlled to improve the photocatalytic activity of TiO2 thin film. The effects of work frequency and input voltage of the surface acoustic wave device on the methylene blue photocatalytic degradation efficiency of the TiO2 thin film were investigated. The TiO2 thin film was vibrated at radio frequency by surface acoustic wave device to increase the scattering and reactive frequency for methylene blue in liquid. The surface acoustic wave device operated at 28.65 MHz work frequency and 0.95 V input voltage revealed the highest photocatalytic degradation efficiency of methylene blue. Compared to the TiO2 thin film combined with and without surface acoustic wave device, the surface acoustic wave device enhanced the TiO2 thin film photocatalytic degradation efficiency to 46%.


2021 ◽  
Vol 7 (5) ◽  
pp. 2100084
Author(s):  
Leonardo Lamanna ◽  
Francesco Rizzi ◽  
Francesco Guido ◽  
Luciana Algieri ◽  
Sergio Marras ◽  
...  

2021 ◽  
pp. 129768
Author(s):  
Xinyu Song ◽  
Hao Jin ◽  
Shurong Dong ◽  
Miling Zhang ◽  
Jikai Zhang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 472
Author(s):  
Jack Chih-Chieh Sheng ◽  
Brian De La Franier ◽  
Michael Thompson

The operation of biosensors requires surfaces that are both highly specific towards the target analyte and that are minimally subject to fouling by species present in a biological fluid. In this work, we further examined the thiosulfonate-based linker in order to construct robust and durable self-assembling monolayers (SAMs) onto hydroxylated surfaces such as silica. These SAMs are capable of the chemoselective immobilization of thiol-containing probes (for analytes) under aqueous conditions in a single, straightforward, reliable, and coupling-free manner. The efficacy of the method was assessed through implementation as a biosensing interface for an ultra-high frequency acoustic wave device dedicated to the detection of avidin via attached biotin. Fouling was assessed via introduction of interfering bovine serum albumin (BSA), IgG antibody, or goat serum. Improvements were investigated systematically through the incorporation of an oligoethylene glycol backbone employed together with a self-assembling diluent without a functional distal group. This work demonstrates that the incorporation of a diluent of relatively short length is crucial for the reduction of fouling. Included in this work is a comparison of the surface attachment of the linker to Si3N4 and AlN, both materials used in sensor technology.


Sign in / Sign up

Export Citation Format

Share Document