Quantitative characterization of the contrast mechanisms of ultra-small-angle X-ray scattering imaging

2008 ◽  
Vol 41 (2) ◽  
pp. 416-427 ◽  
Author(s):  
F. Zhang ◽  
G. G. Long ◽  
L. E. Levine ◽  
J. Ilavsky ◽  
P. R. Jemian

A general treatment of X-ray imaging contrast for ultra-small-angle X-ray scattering (USAXS) imaging is presented; this approach makes use of phase propagation and dynamical diffraction theory to account quantitatively for the intensity distribution at the detector plane. Simulated results from a model system of micrometre-sized spherical SiO2particles embedded in a polypropylene matrix show good agreement with experimental measurements. Simulations by means of a separate geometrical ray-tracing method also account for the features in the USAXS images and offer a complementary view of small-angle X-ray scattering as a contrast mechanism. The ray-tracing analysis indicates that refraction, in the form of Porod scattering, and, to a much lesser extent, X-ray reflection account for the USAXS imaging contrast.

2004 ◽  
Vol 37 (5) ◽  
pp. 757-765 ◽  
Author(s):  
L. E. Levine ◽  
G. G. Long

A new transmission X-ray imaging technique using ultra-small-angle X-ray scattering (USAXS) as a contrast mechanism is described. USAXS imaging can sometimes provide contrast in cases where radiography and phase-contrast imaging are unsuccessful. Images produced at different scattering vectors highlight different microstructural features within the same sample volume. When used in conjunction with USAXS scans, USAXS imaging provides substantial quantitative and qualitative three-dimensional information on the sizes, shapes and spatial arrangements of the scattering objects. The imaging technique is demonstrated on metal and biological samples.


1981 ◽  
Vol 46 (7) ◽  
pp. 1675-1681 ◽  
Author(s):  
Josef Baldrian ◽  
Božena N. Kolarz ◽  
Henrik Galina

Porosity variations induced by swelling agent exchange were studied in a styrene-divinylbenzene copolymer. Standard methods were used in the characterization of copolymer porosity in the dry state and the results were compared with related structural parameters derived from small angle X-ray scattering (SAXS) measurements as developed for the characterization of two-phase systems. The SAXS method was also used for porosity determination in swollen samples. The differences in the porosity of dry samples were found to be an effect of the drying process, while in the swollen state the sample swells and deswells isotropically.


2020 ◽  
Vol 49 (7) ◽  
pp. 823-825
Author(s):  
Yojiro Oba ◽  
Ryuhei Motokawa ◽  
Masahiro Hino ◽  
Nozomu Adachi ◽  
Yoshikazu Todaka ◽  
...  

2012 ◽  
Vol 45 (3) ◽  
pp. 307-312 ◽  
Author(s):  
Takamichi Shinohara ◽  
Tomoko Shirahase ◽  
Daiki Murakami ◽  
Taiki Hoshino ◽  
Moriya Kikuchi ◽  
...  

2011 ◽  
Vol 115 (21) ◽  
pp. 10727-10735 ◽  
Author(s):  
V. M. Gun’ko ◽  
S. T. Meikle ◽  
O. P. Kozynchenko ◽  
S. R. Tennison ◽  
F. Ehrburger-Dolle ◽  
...  

1999 ◽  
Vol 6 (6) ◽  
pp. 1174-1184 ◽  
Author(s):  
A. R. Sandy ◽  
L. B. Lurio ◽  
S. G. J. Mochrie ◽  
A. Malik ◽  
G. B. Stephenson ◽  
...  

2001 ◽  
Vol 81 (6) ◽  
pp. 3522-3533 ◽  
Author(s):  
Stefania Cinelli ◽  
Francesco Spinozzi ◽  
Rosangela Itri ◽  
Stephanie Finet ◽  
Flavio Carsughi ◽  
...  

2017 ◽  
Vol 66 (17) ◽  
pp. 176109
Author(s):  
Sun Xing ◽  
Mo Guang ◽  
Zhao Lin-Zhi ◽  
Dai Lan-Hong ◽  
Wu Zhong-Hua ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document