carbon adsorbents
Recently Published Documents


TOTAL DOCUMENTS

466
(FIVE YEARS 81)

H-INDEX

35
(FIVE YEARS 8)

Pollutants ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 12-20
Author(s):  
Tomoya Takada ◽  
Ryo Tanaka ◽  
Ryoto Ono

Carbon adsorbents for use in the removal of gaseous toluene from the air were prepared from buckwheat (Fagopyrum esculentum Moench) hull. A chemically-activated adsorbent was prepared via the impregnation of raw hull powder with potassium carbonate, followed by thermal decomposition. The chemically-activated adsorbent exhibited improved adsorption capacity for toluene compared to the adsorbent prepared without chemical activation. Toluene concentration in the air decreased from 220 ppm to 160 ppm during 24 h of adsorption using unactivated adsorbent. Only a trace amount of toluene remained after the adsorption under the same conditions using K2CO3-activated adsorbent. This improvement was explained based on experimental results, specifically, iodine adsorption tests, methylene blue adsorption tests, and microscopic observations. Chemical activation dramatically increased the specific surface area of the adsorbent and created mesopores capable of adsorbing toluene. This study revealed that a mesoporous adsorbent for use in volatile toluene removal can be prepared from waste biomass (buckwheat hull) by chemical activation using potassium carbonate.


2022 ◽  
Vol 55 ◽  
pp. 101791
Author(s):  
R. Gonzalez-Olmos ◽  
A. Gutierrez-Ortega ◽  
J. Sempere ◽  
R. Nomen

Surface ◽  
2021 ◽  
Vol 13(28) ◽  
pp. 127-165
Author(s):  
V. M. Gun'ko ◽  

The morphological and textural characteristics of various silicas (93 fumed silicas and 56 porous silicas), different carbons (230), and porous polymers (53) are analyzed using probe (nitrogen, argon, benzene, n-decane, water) adsorption, small angle X-ray scattering (SAXS), and transition (TEM), scanning (SEM) electron and atom force (AFM) microscopies. There are certain correlations between pore volume (Vp) and specific surface area (SSA, SBET) for these materials. Synthesis and treatment temperatures affect this relationship since a linear Vp - SBET approximation scatter decreases with decreasing these temperatures. Silicas are composed of nonporous nanoparticles (NPNP), but activated carbons (AC) are composed of porous nanoparticles (PNP). For different materials, NP are weakly or strongly packed in secondary structures. However, there are general features of pore size distributions (PSD) for NP-based materials, e.g., minimal contribution of narrow mesopores of 3-5 nm in radius due NP-packing effects. For AC produced using the same chars and activation agents but with varied activation time, the textural characteristics demonstrate smooth changes with increasing burn-off degree: nanopores partially transform into narrow mesopores with opposite PSD shifts of broad mesopores and macropores. Comparison of adsorption (open pores accessible for probes) and SAXS (both open and closed pores) data for carbons shows that the difference decreases with increasing burn-off degree due to decreasing contribution of closed pores. Most clear pictures on the particulate morphology and texture could be obtained in parallel analysis using adsorption, SAXS, and microscopic methods with appropriate data treatments.


2021 ◽  
Vol 22 (23) ◽  
pp. 13152
Author(s):  
Martyna Jurkiewicz ◽  
Robert Pełech

This study aimed to describe the adsorption process of ortho-dichlorobenzene (o-DCB) onto activated carbons (ACs) and modified carbon nanotubes (CNTs) from the aqueous phase. The starting material NC_7000 carbon nanotubes were modified by chlorination (NC_C) and then by the introduction of hydroxyl groups (NC_C_B). The concentration of o-DCB in solutions was performed by UV-VIS spectrophotometry. After adsorption, the activated carbons were regenerated by extraction with organic solvents such as acetone, methanol, ethanol, and 1-propanol; the carbon nanotubes were regenerated by methanol. The degree of adsorbate recovery was determined by gas chromatography (GC) with flame ionization detection, using ethylbenzene as an internal standard. The equilibrium isotherm data of adsorption were satisfactorily fitted by the Langmuir equations. The results indicate that carbon adsorbents are effective porous materials for removing o-DCB from the aqueous phase. Additionally, activated carbons are more regenerative adsorbents than carbon nanotubes. The recoveries of o-DCB from ACs were in the range of 76–85%, whereas the recoveries from CNTs were in the range of 23–46%. Modifications of CNTs affect the improvement of their adsorption properties towards o-DCB compared to unmodified CNTs. However, the introduction of new functional groups on carbon nanotube surfaces makes the regeneration process less effective.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7456
Author(s):  
Ismail Luhar ◽  
Salmabanu Luhar ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Rafiza Abdul Razak ◽  
Petrica Vizureanu ◽  
...  

There is nothing more fundamental than clean potable water for living beings next to air. On the other hand, wastewater management is cropping up as a challenging task day-by-day due to lots of new additions of novel pollutants as well as the development of infrastructures and regulations that could not maintain its pace with the burgeoning escalation of populace and urbanizations. Therefore, momentous approaches must be sought-after to reclaim fresh water from wastewaters in order to address this great societal challenge. One of the routes is to clean wastewater through treatment processes using diverse adsorbents. However, most of them are unsustainable and quite costly e.g. activated carbon adsorbents, etc. Quite recently, innovative, sustainable, durable, affordable, user and eco-benevolent Geopolymer composites have been brought into play to serve the purpose as a pretty novel subject matter since they can be manufactured by a simple process of Geopolymerization at low temperature, lower energy with mitigated carbon footprints and marvellously, exhibit outstanding properties of physical and chemical stability, ion-exchange, dielectric characteristics, etc., with a porous structure and of course lucrative too because of the incorporation of wastes with them, which is in harmony with the goal to transit from linear to circular economy, i.e., “one’s waste is the treasure for another”. For these reasons, nowadays, this ground-breaking inorganic class of amorphous alumina-silicate materials are drawing the attention of the world researchers for designing them as adsorbents for water and wastewater treatment where the chemical nature and structure of the materials have a great impact on their adsorption competence. The aim of the current most recent state-of-the-art and scientometric review is to comprehend and assess thoroughly the advancements in geo-synthesis, properties and applications of geopolymer composites designed for the elimination of hazardous contaminants viz., heavy metal ions, dyes, etc. The adsorption mechanisms and effects of various environmental conditions on adsorption efficiency are also taken into account for review of the importance of Geopolymers as most recent adsorbents to get rid of the death-defying and toxic pollutants from wastewater with a view to obtaining reclaimed potable and sparkling water for reuse offering to trim down the massive crisis of scarcity of water promoting sustainable water and wastewater treatment for greener environments. The appraisal is made on the performance estimation of Geopolymers for water and wastewater treatment along with the three-dimensional printed components are characterized for mechanical, physical and chemical attributes, permeability and Ammonium (NH4+) ion removal competence of Geopolymer composites as alternative adsorbents for sequestration of an assortment of contaminants during wastewater treatment.


2021 ◽  
pp. 105802
Author(s):  
Yulong Qian ◽  
Dong Ding ◽  
Kexin Li ◽  
Dezhen Fang ◽  
Yanping Wang ◽  
...  

2021 ◽  
pp. 37-41
Author(s):  
Kh. S. Tasibekov ◽  
Zh. Zh. Bekishev ◽  
T. N. Khavaza ◽  
R. R. Tokpaev

Author(s):  
И.К. Гиндулин ◽  
В.В. Юрченко

Изучение термодинамических и кинетических характеристик позволяет более эффек- тивно использовать углеродные адсорбенты в технологических процессах, чем поддерживается тех- нология их использования на оптимальном уровне. В работе изучалась адсорбционная активность углеродных нанопористых материалов, рассчитывались кинетические характеристики процесса ад- сорбции, термодинамические характеристики (энергия Гиббса, энтальпия, константа адсорбции) адсорбции ионов меди на активных углях, полученных на установках (модульная пиролизная реторт- ная установка) и УВП (углевыжигательная печь). Установлено, что процесс идёт самопроизвольно, характер адсорбционного взаимодействия экзотермический. Адсорбционные равновесие достигается меньше чем за 15 мин. The study of thermodynamic and kinetic characteristics allows more efficient use of carbon adsorbents in technological processes. Thus, keeping their use at an optimal level. The adsorption activity of carbon nanoporous materials was studied, the kinetic characteristics of the adsorption process, thermodynamic characteristics (Gibbs energy, enthalpy, adsorption constant) of copper adsorption on activated carbons obtained at MPRP and CK installations were calculated in this work. It was found that the process is spontaneous (G <0). The nature of the adsorption behavior is exothermic. Adsorption equilibrium is achieved in less than 15 minutes.


2021 ◽  
Author(s):  
José Carlos Alexandre de Oliveira ◽  
Paulo Ricardo Moura Rodrigues ◽  
Sebastião Mardonio Pereira de Lucena

Abstract The specification of a particular activated carbon adsorbents for removal of phenol and related derivatives, from dilute aqueous solutions, is still based on lengthy trial and error experimental tests. A predictive model of adsorption of these compounds would considerably reduce the carbon selection time and could also bring new information to support more efficient carbon synthesis. The use of molecular simulation and the methodology of representative pores, proved to be adequate for quantitative prediction of phenol adsorption. Here the methodology is being extended to chlorophenols, an important class of phenol-derived pollutants. A set of ortho and para-chlorophenol isotherms were simulated for different representative pores in order to predict carbon adsorption and determine the most significative pore size. At low concentrations (1x10-4 mol/L), the pores of 8.9 and 18.5 Å are the most effective. For concentrations above 3 x10-4 mol/L pores in the range of 27.9 Å must be present in the activated carbon. The adsorption isotherm difference between ortho and para-chlorophenol, identified experimentally, was reproduced in the simulation and its origin was investigated further. Finally, the adsorption isotherms of chlorophenols for other activated carbons were predicted with the help of the model.


Sign in / Sign up

Export Citation Format

Share Document