Simulation of the powder diffraction pattern of randomly restacked Ca2Nb3O10nanosheets

2009 ◽  
Vol 42 (6) ◽  
pp. 1062-1067 ◽  
Author(s):  
Mitsuko Onoda ◽  
Yasuo Ebina ◽  
Takayoshi Sasaki

From X-ray powder diffraction pattern features, layered KCa2Nb3O10·nH2O synthesized through flocculation of delaminated Ca2Nb3O10nanosheets with K ions appeared to be composed of randomly stacked nanosheets. Powder pattern simulation was conducted based on the matrix method using a random stacking model. When seven sheets were used as the coherent thickness, agreement in pattern fitting between the experimental and calculated intensities was satisfactory, and information about textures and atomic positions was obtained.

1970 ◽  
Vol 37 (291) ◽  
pp. 780-789 ◽  
Author(s):  
M. S. Y. Bhatty ◽  
J. A. Gard ◽  
F. P. Glasser

SummaryThe X-ray powder diffraction pattern of synthetic anorthite crystallized from a CaO-Al2O3-SiO2glass having the anorthite (1:1:2) molar ratio is identical with that reported in the literature, and also with that of a natural Japanese anorthite specimen. Increasing the CaO or SiO2content of the parent glasses used for crystallization studies has no measurable effect on that portion of the powder pattern attributable to anorthite. However, glasses containing an excess of Al2O3ranging from 5 to 10 mol % gave, after crystallization at temperatures belowc.1150 °C distinctively different powder pattern. Several powder reflections that are normally strong, such as, etc., were found to be virtually absent. Moreover, the chemical excess of Al2O3did not appear as a separate alumina-bearing phase. Upon reheating these anorthites to temperatures above 1200–50 °C or upon crystallizing a fresh portion of alumina-rich glass above 1200-50 °C, only the normal anorthite powder X-ray pattern was obtained; the pattern also contained some reflections due to corundum (α-Al2O3). Examination of the anomalous low-temperature anorthite by electron diffraction shows that the apparent absence of some powder lines is caused by both albite and Carlsbad twinning, which occur on an intimate scale not exceeding a few unit cell repeats. From the unique manner of its occurrence, the twinning is believed to be associated with the inclusion of an excess of Al3+in the anorthite.


Author(s):  
Per-Erik Werner

AbstractThe x-ray diffraction powder pattern of strontium azide dihydrate, Sr(N


2013 ◽  
Vol 28 (S2) ◽  
pp. S481-S490
Author(s):  
Oriol Vallcorba ◽  
Anna Crespi ◽  
Jordi Rius ◽  
Carles Miravitlles

The viability of the direct-space strategy TALP (Vallcorba et al., 2012b) to solve crystal structures of molecular compounds from laboratory powder diffraction data is shown. The procedure exploits the accurate metric refined from a ‘Bragg-Brentano’ powder pattern to extract later the intensity data from a second ‘texture-free’ powder pattern with the DAJUST software (Vallcorba et al., 2012a). The experimental setup for collecting this second pattern consists of a circularly collimated X-ray beam and a 2D detector. The sample is placed between two thin Mylar® foils, which reduces or even eliminates preferred orientation. With the combination of the DAJUST and TALP software a preliminary but rigorous structural study of organic compounds can be carried out at the laboratory level. In addition, the time-consuming filling of capillaries with diameters thinner than 0.3mm is avoided.


2005 ◽  
Vol 20 (3) ◽  
pp. 203-206 ◽  
Author(s):  
M. Grzywa ◽  
M. Różycka ◽  
W. Łasocha

Potassium tetraperoxomolybdate (VI) K2[Mo(O2)4] was prepared, and its X-ray powder diffraction pattern was recorded at low temperature (258 K). The unit cell parameters were refined to a=10.7891(2) Å, α=64.925(3)°, space group R−3c (167), Z=6. The compound is isostructural with potassium tetraperoxotungstate (VI) K2[W(O2)4] (Stomberg, 1988). The sample of K2[Mo(O2)4] was characterized by analytical investigations, and the results of crystal structure refinement by Rietveld method are presented; final RP and RWP are 9.79% and 12.37%, respectively.


1999 ◽  
Vol 14 (4) ◽  
pp. 258-260 ◽  
Author(s):  
W. Paszkowicz

X-ray powder diffraction pattern for InN synthesized using a microwave plasma source of nitrogen is reported. The data were obtained with the help of an automated Bragg-Brentano diffractometer using Ni-filtered CuKα radiation. The lattice parameters for the wurtzite-type unit cell are ao=3.5378(1) Å, co=5.7033(1) Å. The calculated density is 6.921±0.002 g/cm3.


2021 ◽  
Vol 59 (6) ◽  
pp. 1833-1863
Author(s):  
Andrew M. McDonald ◽  
Ingrid M. Kjarsgaard ◽  
Louis J. Cabri ◽  
Kirk C. Ross ◽  
Doreen E. Ames ◽  
...  

ABSTRACT Oberthürite, Rh3(Ni,Fe)32S32, and torryweiserite, Rh5Ni10S16, are two new platinum-group minerals discovered in a heavy-mineral concentrate from the Marathon deposit, Coldwell Complex, Ontario, Canada. Oberthürite is cubic, space group , with a 10.066(5) Å, V 1019.9(1) Å3, Z = 1. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.06(100)(311), 2.929(18)(222), 1.9518(39)(115,333), 1.7921(74)(440), 1.3184(15)(137,355) and 1.0312(30)(448). Associated minerals include: vysotskite, Au-Ag alloy, isoferroplatinum, Ge-bearing keithconnite, majakite, coldwellite, ferhodsite-series minerals (cuprorhodsite–ferhodsite), kotulskite, and mertieite-II, and the base-metal sulfides, chalcopyrite, bornite, millerite, and Rh-bearing pentlandite. Grains of oberthürite are up to 100 × 100 μm and the mineral commonly develops in larger composites with coldwellite, isoferroplatinum, zvyagintsevite, Rh-bearing pentlandite, and torryweiserite. The mineral is creamy brown compared to coldwellite and bornite, white when compared to torryweiserite, and gray when compared chalcopyrite and millerite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 36.2 (470 nm), 39.1 (546 nm), 40.5 (589 nm), and 42.3 (650 nm). The calculated density is 5.195 g/cm3, determined using the empirical formula and the unit-cell parameter from the refined crystal structure. The average result (n = 11) using energy-dispersive spectrometry is: Rh 10.22, Ni 38.83, Fe 16.54, Co 4.12, Cu 0.23 S 32.36, total 100.30 wt.%, which corresponds to (Rh2Ni0.67Fe0.33)Σ3.00(Ni19.30Fe9.09Co2.22Rh1.16Cu0.12)∑31.89S32.11, based on 67 apfu and crystallochemical considerations, or ideally, Rh3Ni32S32. The name is for Dr. Thomas Oberthür, a well-known researcher on alluvial platinum-group minerals, notably those found in deposits related to the Great Dyke (Zimbabwe) and the Bushveld complex (Republic of South Africa). Torryweiserite is rhombohedral, space group , with a 7.060(1), c 34.271(7) Å, V 1479.3(1), Z = 3. The six strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.080(33)(021), 3.029(58)(116,0110), 1.9329(30)(036,1115,1210), 1.7797(100)(220,0216), 1.2512(49)(0416), and 1.0226(35)(060,2416,0232). Associated minerals are the same as for oberthürite. The mineral is slightly bluish compared to oberthürite, gray when compared to chalcopyrite, zvyagintsevite, and keithconnite, and pale creamy brown when compared to bornite and coldwellite. No streak or microhardness could be measured. The mineral shows no discernible pleochroism, bireflectance, or anisotropy. The reflectance values (%) in air for the standard COM wavelengths are: 34.7 (470 nm), 34.4 (546 nm), 33.8 (589 nm), and 33.8 (650 nm). The calculated density is 5.555 g/cm3, determined using the empirical formula and the unit-cell parameters from the refined crystal structure. The average result (n = 10) using wavelength-dispersive spectrometry is: Rh 28.02, Pt 2.56, Ir 1.98, Ru 0.10, Os 0.10, Ni 17.09, Fe 9.76, Cu 7.38, Co 1.77 S 30.97, total 99.73 wt.%, which corresponds to (Rh4.50Pt0.22Ir0.17Ni0.08Ru0.02Os0.01)∑5.00(Ni4.73Fe2.89Cu1.92Co0.50)Σ10.04S15.96, based on 31 apfu and crystallochemical considerations, or ideally Rh5Ni10S16. The name is for Dr. Thorolf (‘Torry') W. Weiser, a well-known researcher on platinum-group minerals, notably those found in deposits related to the Great Dyke (Zimbabwe) and the Bushveld complex (Republic of South Africa). Both minerals have crystal structures similar to those of pentlandite and related minerals: oberthürite has two metal sites that are split relative to that in pentlandite, and torryweiserite has a layered structure, comparable, but distinct, to that developed along [111] in pentlandite. Oberthürite and torryweiserite are thought to develop at ∼ 500 °C under conditions of moderate fS2, through ordering of Rh-Ni-S nanoparticles in precursor Rh-bearing pentlandite during cooling. The paragenetic sequence of the associated Rh-bearing minerals is: Rh-bearing pentlandite → oberthürite → torryweiserite → ferhodsite-series minerals, reflecting a relative increase in Rh concentration with time. The final step, involving the formation of rhodsite-series minerals, was driven via by the oxidation of Fe2+ → Fe3+ and subsequent preferential removal of Fe3+, similar to the process involved in the conversion of pentlandite to violarite. Summary comments are made on the occurrence and distribution of Rh, minerals known to have Rh-dominant chemistries, the potential existence of both Rh3+ and Rh2+, and the crystallochemical factors influencing accommodation of Rh in minerals.


1982 ◽  
Vol 46 (341) ◽  
pp. 453-457 ◽  
Author(s):  
R. J. Hill ◽  
J. H. Canterford ◽  
F. J. Moyle

AbstractEuhedral crystals of the low-temperature mineral lansfordite, MgCO3 · 5H2O, have been prepared from saturated magnesium bicarbonate solutions at temperatures below 10°C. The crystals are monoclinic P21/a with a = 12.4758(7), b = 7.6258(4), c = 7.3463(6)Å, β = 101.762(6)°, V = 684.24Å3, Dcalc. = 1.693 g cm−3, Dobs. = 1.70(1) g m−3. At room temperature, the crystals slowly effloresce to produce pseudomorphs of nesquehonite, MgCO3 · 3H2O. Dehydration is complete at 300°C, with decarbonation taking place in the interval to 560°C. A new X-ray powder diffraction pattern is presented, and details of the infra-red absorption spectrum are discussed.


1993 ◽  
Vol 8 (4) ◽  
pp. 249-250 ◽  
Author(s):  
Chan Park ◽  
Robert L. Snyder

The X-ray powder diffraction pattern for a sample of the high-temperature superconducting phase Tl0.5Pb0.5Sr2CaCu2O6.5+δ has been determined. The sample was prepared by a molten salt technique and had a Tc of 96 K.


2003 ◽  
Vol 18 (1) ◽  
pp. 47-49
Author(s):  
J. C. Poveda ◽  
J. A. Henao ◽  
J. A. Pinilla ◽  
V. V. Kouznetsov ◽  
C. Ochoa

The X-ray powder diffraction pattern for a bridgehead heterocyclic system was determined. 2-exo-(β-pyridyl)-6-exo-phenyl-7-oxa-1-azabicyclo[2.2.1]heptane, C16H16N2O, is triclinic with refined unit cell parameters a=1.1012(2), b=1.3950(2), c=1.0074(3) nm, α=111.09(2)°, β=104.97(2)°, γ=77.38(2)°, V=1.3813(3) nm3, Z=4, and Dx=1.212 g/cm3 with space group P-1 (No. 2).


Sign in / Sign up

Export Citation Format

Share Document