A hemispherical furnace for high-temperature single crystal X-ray diffraction studies

1971 ◽  
Vol 4 (5) ◽  
pp. 352-356 ◽  
Author(s):  
R. W. Lynch ◽  
B. Morosin
1994 ◽  
Vol 6 (4) ◽  
pp. 434-440 ◽  
Author(s):  
Paul A. Northrup ◽  
John B. Parise ◽  
L. K. Cheng ◽  
L. T. Cheng ◽  
E. M. McCarron

2015 ◽  
Vol 70 (4) ◽  
pp. 207-214 ◽  
Author(s):  
Daniela Vitzthum ◽  
Stefanie A. Hering ◽  
Lukas Perfler ◽  
Hubert Huppertz

AbstractOrthorhombic dysprosium orthogallate DyGaO3 and trigonal gallium orthoborate GaBO3 were synthesized in a Walker-type multianvil apparatus under high-pressure/high-temperature conditions of 8.5 GPa/1350 °C and 8 GPa/700 °C, respectively. Both crystal structures could be determined by single-crystal X-ray diffraction data collected at room temperature. The orthorhombic dysprosium orthogallate crystallizes in the space group Pnma (Z = 4) with the parameters a = 552.6(2), b = 754.5(2), c = 527.7(2) pm, V = 0.22002(8) nm3, R1 = 0.0309, and wR2 = 0.0662 (all data) and the trigonal compound GaBO3 in the space group R3̅c (Z = 6) with the parameters a = 457.10(6), c = 1419.2(3) pm, V = 0.25681(7) nm3, R1 = 0.0147, and wR2 = 0.0356 (all data).


2015 ◽  
Vol 29 (25n26) ◽  
pp. 1542025 ◽  
Author(s):  
L. P. Cao ◽  
L. Q. Pan ◽  
W. M. Li ◽  
X. C. Wang ◽  
Q. Q. Liu ◽  
...  

Single crystal [Formula: see text] was prepared under high pressure and high temperature. Single crystal X-ray diffraction (XRD) result shows a cubic perovskite structure. The magnetic and resistivity measurement results indicate that [Formula: see text] is a paramagnetic semiconductor.


2021 ◽  
Vol 106 (1) ◽  
pp. 123-134
Author(s):  
Ernesto Mesto ◽  
Salvatore Laurita ◽  
Maria Lacalamita ◽  
Rosa Sinisi ◽  
Giovanna Rizzo ◽  
...  

Abstract The crystal chemistry and thermal behavior of Fe-carpholite from the Pollino Massif have been investigated by a multi-method approach. A combination of optical microscopy, scanning electron microscopy, mRaman spectroscopy, thermal analysis, room-temperature single-crystal X-ray diffraction, and high-temperature X-ray powder diffraction was employed. Field and micromorphological observations showed that the studied carpholite occurs in veins embedded in fine-grained matapelites and coexist with quartz, calcite, chlorite, and phengite. In particular, the tiny carpholite crystals are closely associated with quartz, suggesting simultaneous formation. Structure refinements from single-crystal X-ray diffraction confirm that carpholite crystallizes in the Ccce space group. Anisotropic refinements converged at 2.3 ≤ R (%) ≤ 2.6 and yielded unit-cell parameters a ~13.77 Å, b ~20.16 Å, c ~5.11 Å, and V ~1419 Å3. An XFe [i.e., the molar fraction Fe2+/(Mg+Fe2++Mn)] of ~0.6 was derived from the refined occupancy at the M1 site and is correlated to structural expansion mainly along the b and a axes and to geometrical distortions of the M1, M2, and M3 octahedra. mRaman spectrum of unoriented Fe-carpholite crystals exhibits several bands in the 200–1200 cm–1 region, a strong peak at 3630 cm–1 and a weak peak at 3593 cm–1, the latter two of which account for the presence of two independent OH groups, as also revealed by the X-ray structure refinement. The TG curve indicates a total mass loss of 15.6% in the temperature range 30–1000 °C, and the DTA curve shows a broad endothermic band at ~400 °C, extending up to ~650 °C, and weak exothermic peaks at ~700 and 750 °C. The latter may be ascribed to the breakdown of the Fe-carpholite structure and crystallization of new phases. The in situ high-temperature X-ray powder diffraction from 30 to 1105 °C revealed no significant changes in XRD patterns from 30 to 355 °C but reflection splittings from 380 °C due to a Fe-oxidation/deprotonation process. The carpholite and deprotonated carpholite phases coexist in the temperature range 380–580 °C, whereas only the deprotonated phase is observed up to 630 °C. Above this temperature, the carpholite structure collapses and the characteristic peaks of spinel and quartz phases are observed. At 1105 °C, spinel, mullite, garnet, cristobalite, and tridymite can be clearly identified. Our results provide insight into the thermal stability of Fe-carpholites and may help understand the thermal evolution of HP/LT metasediments.


Sign in / Sign up

Export Citation Format

Share Document