scholarly journals Powder diffraction and crystal structure prediction: a two-way relationship?

2005 ◽  
Vol 61 (a1) ◽  
pp. c156-c156
Author(s):  
L. Vella-Zarb ◽  
J. Cameron ◽  
M. Tremayne
2018 ◽  
Vol 211 ◽  
pp. 477-491 ◽  
Author(s):  
Melissa Tan ◽  
Alexander G. Shtukenberg ◽  
Shengcai Zhu ◽  
Wenqian Xu ◽  
Eric Dooryhee ◽  
...  

X-ray powder diffraction and crystal structure prediction algorithms are used in synergy to establish the crystal structure of the eighth polymorph of ROY, form R05.


2007 ◽  
Vol 40 (1) ◽  
pp. 105-114 ◽  
Author(s):  
N. Panina ◽  
F. J. J. Leusen ◽  
F. F. B. J. Janssen ◽  
P. Verwer ◽  
H. Meekes ◽  
...  

The structures of the α, β and γ polymorphs of quinacridone (Pigment Violet 19) were predicted usingPolymorph Predictorsoftware in combination with X-ray powder diffraction patterns of limited quality. After generation and energy minimization of the possible structures, their powder patterns were compared with the experimental ones. On this basis, candidate structures for the polymorphs were chosen from the list of all structures. Rietveld refinement was used to validate the choice of structures. The predicted structure of the γ polymorph is in accordance with the experimental structure published previously. Three possible structures for the β polymorph are proposed on the basis of X-ray powder patterns comparison. It is shown that the α structure in the Cambridge Structural Database is likely to be in error, and a new α structure is proposed. The present work demonstrates a method to obtain crystal structures of industrially important pigments when only a low-quality X-ray powder diffraction pattern is available.


2017 ◽  
Vol 8 (7) ◽  
pp. 4926-4940 ◽  
Author(s):  
Alexander G. Shtukenberg ◽  
Qiang Zhu ◽  
Damien J. Carter ◽  
Leslie Vogt ◽  
Johannes Hoja ◽  
...  

Crystal structures of four new coumarin polymorphs were solved by crystal structure prediction method and their lattice and free energies were calculated by advanced techniques.


2008 ◽  
Vol 23 (S1) ◽  
pp. S5-S12 ◽  
Author(s):  
Armel Le Bail

The fuzzy frontiers between structure determination by powder diffractometry and crystal structure prediction are discussed. The application of a search-match program combined with a database of more than 60 000 predicted powder diffraction patterns is demonstrated. Immediate structure solution (before indexing) is shown to be possible by this method if the discrepancies between the predicted crystal structure cell parameters and the actual ones are <1%. Incomplete chemistry of the hypothetical models (missing interstitial cations, water molecules, etc.) is not necessarily a barrier to a successful identification (in spite of inducing large intensity errors), provided the search-match is made with chemical restrictions on the elements present in both the virtual and experimental compounds.


2018 ◽  
Vol 140 (32) ◽  
pp. 10158-10168 ◽  
Author(s):  
Kevin Ryan ◽  
Jeff Lengyel ◽  
Michael Shatruk

RSC Advances ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 3577-3581 ◽  
Author(s):  
Nursultan Sagatov ◽  
Pavel N. Gavryushkin ◽  
Talgat M. Inerbaev ◽  
Konstantin D. Litasov

We carried out ab initio calculations on the crystal structure prediction and determination of P–T diagrams within the quasi-harmonic approximation for Fe7N3 and Fe7C3.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Jianjun Hu ◽  
Wenhui Yang ◽  
Rongzhi Dong ◽  
Yuxin Li ◽  
Xiang Li ◽  
...  

Crystal structure prediction is now playing an increasingly important role in the discovery of new materials or crystal engineering.


Author(s):  
Suryakanti Debata ◽  
Smruti R. Sahoo ◽  
Rudranarayan Khatua ◽  
Sridhar Sahu

In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds.


Sign in / Sign up

Export Citation Format

Share Document