Basic forms of supramolecular self-assembly organized by parallel and antiparallel hydrogen bonds in the racemic crystal structures of six disubstituted and trisubstituted cyclopentane derivatives

2001 ◽  
Vol 57 (4) ◽  
pp. 539-550 ◽  
Author(s):  
Alajos Kálmán ◽  
Gyula Argay ◽  
László Fábián ◽  
Gábor Bernáth ◽  
Ferenc Fülöp

A selection of stereoisomeric 2-hydroxy-1-cyclopentanecarboxamides, a 4-tert-butyl derivative and three tert-butyl derivatives of the respective carboxylic acid were subjected to X-ray crystallography. The optically active molecules (I)–(VI) form racemic crystals. Each racemic structure is basically determined by two intermolecular hydrogen bonds of O—H...O=C—XH and O=C—X—H...OH types (X = O, NH). The partially similar patterns of close packing observed reflect five basic forms of supramolecular self-assembly. In the racemic crystals of chiral molecules, there are homo- and heterochiral chains of molecules formed by the principal (O—H...O=C) hydrogen bonds. These chains assemble either in a parallel or antiparallel mode. The parallel homochiral chains (hop) observed in structure (II), (1R*,2R*)-2-hydroxy-1-cyclopentanecarboxamide, demand the polar space group Pca21, while the parallel heterochiral chains (hep) are organized in antiparallel layers with space group P21/n in structure (VI), (1R*,2S*,5R*-5-tert-butyl-2-hydroxy-1-cyclopentanecarboxylic acid). Heterochiral chains in an antiparallel array (hea) are found in (I), (1R*,2S*)-2-hydroxy-1-cyclopentanecarboxamide, and (V) [(1R*,2S*4S*)-4-tert-butyl-2-hydroxy-1-cyclopentanecarboxylic acid, space group P21/c]. Structures (IV), (1R*,2S*,4R*)-4-tert-butyl-2-hydroxy-1-cyclopentanecarboxylic acid, and (III), (1R*,2R*,4S*)-4-tert-butyl-2-hydroxy-1-cyclopentanecarboxamide, reveal that homochiral chains in an antiparallel array (hoa; cross-linked by heterochiral dimers held together by the second hydrogen bonds) can be formed by either translation (space group P\bar 1) or a screw axis (space group P21/c). These alternatives are denoted hoa1 and hoa2. Similarly, within each pattern (hea, hep and hop) two slightly different alternatives can be expected. The partial similarities in the identified five patterns of hydrogen bonding are described by graph-set notations. Structures (I), (IV) and (V) can be characterized by a common supramolecular synthon, while the highest degree of similarity is shown by the isostructurality of (I) and (V).

2017 ◽  
Vol 73 (10) ◽  
pp. 820-827 ◽  
Author(s):  
Mikhail E. Minyaev ◽  
Ilya E. Nifant'ev ◽  
Alexander N. Tavtorkin ◽  
Sof'ya A. Korchagina ◽  
Shadana Sh. Zeynalova ◽  
...  

The crystal structures of rare-earth diaryl- or dialkylphosphate derivatives are poorly explored. Crystals of bis[bis(2,6-diisopropylphenyl)phosphato-κO]chloridotetrakis(methanol-κO)neodymium methanol disolvate, [Nd(C24H34O4P)Cl(CH4O)4]·2CH3OH, (1), and of the lutetium, [Lu(C24H34O4P)Cl(CH4O)4]·2CH3OH, (2), and yttrium, [Y(C24H34O4P)Cl(CH4O)4]·2CH3OH, (3), analogues have been obtained by reactions between lithium bis(2,6-diisopropylphenyl)phosphate and LnCl3(H2O)6 (in a 2:1 ratio) in methanol. Compounds (1)–(3) crystallize in the C2/c space group. Their crystal structures are isomorphous. The molecule possesses C 2 symmetry with a twofold crystallographic axis passing through the Ln and Cl atoms. The bis(2,6-diisopropylphenyl)phosphate ligands all display a κ1 O-monodentate coordination mode. The coordination polyhedron for the metal atom [coordination number (CN) = 7] is a distorted pentagonal bipyramid. Each [Ln{O2P(O-2,6-iPr2C6H3)2}2Cl(CH3OH)4] molecular unit exhibits two intramolecular O—H...O hydrogen bonds, forming six-membered rings, and two intramolecular O—H...Cl interactions, forming four-membered rings. Intermolecular O—H...O hydrogen bonds connect each unit via four noncoordinating methanol molecules with four other units, forming a two-dimensional hydrogen-bond network. Crystals of bis[bis(2,6-diisopropylphenyl)phosphato-κO]tetrakis(methanol-κO)(nitrato-κ2 O,O′)neodymium methanol disolvate, [Nd(C24H34O4P)(NO3)(CH4O)4]·2CH3OH, (4), have been obtained in an analogous manner from NdCl3(H2O)6. Compound (4) also crystalizes in the C2/c space group. Its crystal structure is similar to those of (1)–(3). The κ2 O,O′-bidentate nitrate anion is disordered over a twofold axis, being located nearly on it. Half of the molecule is crystallographically unique (CNNd = 8). Unlike (1)–(3), complex (4) exhibits disorder of all three methanol molecules, one isopropyl group of the phosphate ligand and the NO3 − ligand. The structure of (4) displays intra- and intermolecular O—H...O hydrogen bonds similar to those in (1)–(3). Compounds (1)–(4) represent the first reported mononuclear bis[bis(diaryl/dialkyl)phosphate] rare-earth complexes.


RSC Advances ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 6164-6170 ◽  
Author(s):  
Francisco Ramón Fortea-Pérez ◽  
Nadia Marino ◽  
Giovanni de Munno ◽  
Donatella Armentano ◽  
Miguel Julve ◽  
...  

The reaction of aqueous [PdCl4]2−withN-4-Xphenyloxamate ligands (X = F, Cl, Br) afforded three non-isostructural compounds exhibiting intriguing diverse supramolecular assemblies driven by hydrogen bonds and/or halogen⋯halogen interactions.


2012 ◽  
Vol 68 (10) ◽  
pp. o408-o412 ◽  
Author(s):  
Ashokkumar Subashini ◽  
Kandasamy Ramamurthi ◽  
Helen Stoeckli-Evans

The 4-chloro- [C14H11ClN2O2, (I)], 4-bromo- [C14H10BrN2O2, (II)] and 4-diethylamino- [C18H21N3O2, (III)] derivatives of benzylidene-4-hydroxybenzohydrazide, all crystallize in the same space group (P21/c), (I) and (II) also being isomorphous. In all three compounds, the conformation about the C=N bond isE. The molecules of (I) and (II) are relatively planar, with dihedral angles between the two benzene rings of 5.75 (12) and 9.81 (17)°, respectively. In (III), however, the same angle is 77.27 (9)°. In the crystal structures of (I) and (II), two-dimensional slab-like networks extending in theaandcdirections are formedviaN—H...O and O—H...O hydrogen bonds. The molecules stack head-to-tailviaπ–π interactions involving the aromatic rings [centroid–centroid distance = 3.7622 (14) Å in (I) and 3.8021 (19) Å in (II)]. In (III), undulating two-dimensional networks extending in thebandcdirections are formedviaN—H...O and O—H...O hydrogen bonds. The molecules stack head-to-headviaπ–π interactions involving inversion-related benzene rings [centroid–centroid distances = 3.6977 (12) and 3.8368 (11) Å].


1997 ◽  
Vol 53 (2) ◽  
pp. 262-271 ◽  
Author(s):  
Q. Li ◽  
T. C. W. Mak

Air-sensitive selenourea inclusion complexes tetraethylammonium chloride–selenourea (1/2), (C2H5)4N+.C1−.2[(NH2)2CSe] (1), tetra-n-propyl-ammonium chloride–selenourea (1/3), (n-C3H7)4N+.C1−.3[(NH2)2CSe] (2), tetra-n-propylammonium bromide–selenourea (1/3), (n-C3H7)4N+.Br−.3[(NH2)2CSe] (3), and tetra-n-propylammonium iodide–selenourea (1/1), (n-C3H7)4N+.I−.(NH2)2CSe (4), have been prepared and characterized by X-ray crystallography. Crystal data, Mo Kα radiation: (1), space group P21/n, Z = 4, a = 8.768 (5), b = 11.036 (6), c = 19.79 (1) Å, β = 96.92 (1)°, R F = 0.055 for 1468 observed data; (2), space group Cc, Z = 4, a = 18.091 (4), b = 13.719 (3), c = 11.539 (2) Å, β = 111.93 (3)°, R F = 0.051 for 1187 observed data; (3), space group Cc, Z = 4, a = 18.309  (4), b = 13.807 (3), c = 11.577 (2) Å, β = 112.45 (3)°, R F = 0.049 for 1592 observed data; (4), space group P21/n, Z = 4, a = 8.976 (1), b = 14.455 (2), c = 15.377 (3) Å, β = 94.16(1)°, R F = 0.062 for 1984 observed data. In the crystal structure of (1) the parallel alternate arrangement of selenourea–chloride ribbons and selenourea chains generates a puckered layer and the cations are sandwiched between them. In the isomorphous complexes (2) and (3) wide selenourea–halide double ribbons are crosslinked by bridging selenourea molecules via N—H...Se and N—H...X hydrogen bonds [average N...Se = 3.521 (8) and 3.527 (7), N...Cl = 3.354 (8) and N...Br = 3.500 (7) Å in (2) and (3), respectively] to form a channel-like three-dimensional network and the cations are accommodated in a single column within each channel. In the crystal structure of (4) the selenourea molecules are joined in the shoulder-to-shoulder fashion via N—H...Se hydrogen bonds [N...Se = 3.529 (7) and 3.534 (7) Å] to generate a ribbon and each selenourea molecule also forms a pair of chelating N—H...I hydrogen bonds [N...I = 3.567 (7) and 3.652 (7) Å] to an adjacent iodide ion.


2014 ◽  
Vol 70 (a1) ◽  
pp. C666-C666
Author(s):  
Marcin Podsiadło ◽  
Andrzej Katrusiak

Halogen and hydrogen bonds [1] are most often associated with the structure of molecular crystals. Even weak specific interactions, such as halogen···halogen and CH···halogen contacts, can compete between themselves and with Kitaigorodski's close packing rule. The competition between halogen···halogen and CH···halogen interactions has been studied at high pressure for the series of six dihalomethanes CH2XY (X,Y = Cl, Br, I). They crystallize in several structural types of space groups Pbcn, C2/c, Pnma, Pna21or Fmm2. In all these compounds and in their polymorphs the halogen···halogen and CH···halogen interactions persist despite considerable structural differences. The group of monohalomethanes (CH3X, X = Cl, Br, I) are the simplest organic polar compounds and ideal models for studying halogen···halogen and CH···halogen interactions. For these simplest haloalkanes, the halogen···halogen competition with CH···halogen bonds, scaled in the function of electrostatic potential in the Cl, Br, I series, is affected by pressure. Phase α-CH3Br, isostructural with CH3I (orthorhombic space group Pnma) and dominated by halogen···halogen bonds, is destabilized by pressure. At 1.5 GPa the ambient-pressure α-CH3Br phase transforms into phase β-CH3Br governed by CH···halogen interactions. Phase β of CH3Br is isostructural with CH3Cl, orthorhombic space group Cmc21[2,3]. The CH3Br molecules are more evenly accommodated in space group Cmc21and CH···halogen interactions are favoured by the close-packing effect.


1995 ◽  
Vol 73 (7) ◽  
pp. 915-928 ◽  
Author(s):  
John E. Drake ◽  
Anil G. Mislankar ◽  
Raju Ratnani ◽  
Jincai Yang

The O,O-alkylene dithiophosphate derivatives of triphenyl- and diphenylgermane, [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] and [Formula: see text] have been prepared and characterized by infrared, Raman, and 1H, 13C, and 31P NMR spectroscopy, mass spectrometry, and, in three cases, X-ray crystallography. [Formula: see text] 1, crystallizes as monoclinic in the space group P21/a (No. 14) with the cell parameters a = 12.868(5) Å, b = 11.354(4) Å, c = 17.207(4) Å, β = 95.42(2)°, V = 2502(1) Å3, Z = 4, R = 0.0640, and Rw = 0.0585. [Formula: see text] 2, crystallizes as orthorhombic in the space group Pbca (No. 61) with the cell parameters a = 23.007(4) Å, b = 16.840(4) Å, c = 12.068(3) Å, V = 4657(3) Å3, Z = 8, R = 0.0502, and Rw = 0.0329. [Formula: see text] 3, crystallizes as monoclinic in the space group C2/c (No. 15) with the cell parameters a = 35.48(2) Å, b = 9.275(5) Å, c = 20.78(1) Å, β = 120.93(3)° V = 5866(5) Å3, Z = 8, R = 0.0674, and Rw = 0.0562. As with their methylgermanium analogues, the environment about germanium is essentially that of a distorted tetrahedron, with the terminal sulfur atoms oriented towards germanium rather than away from it, in contrast with analogous noncyclic dithiophosphatogermanes. The substituents on the atoms in both the five- and six-membered rings maintain their nonequivalence in solution, in contrast with tin analogues. Keywords: structure, germanium, diphenyl, triphenyl, cyclic dithiophosphates


2017 ◽  
Vol 28 (10) ◽  
pp. 1321-1329 ◽  
Author(s):  
Philipp M. Holstein ◽  
Julian J. Holstein ◽  
Eduardo C. Escudero-Adán ◽  
Olivier Baudoin ◽  
Antonio M. Echavarren

2014 ◽  
Vol 69 (11-12) ◽  
pp. 1315-1320 ◽  
Author(s):  
Cindy Döring ◽  
Peter G. Jones

Abstract The reaction between (tht)AuCl (tht = tetrahydrothiophene) and KSCN leads to a mixture possibly consisting of gold(I) thiocyanate and [Au(tht)2]+ [Au(SCN)2]-. This can be treated with pyridine to give the ionic derivative [Au(py)2]+ [Au(SCN)2]- (1), for which the structures of two polymorphs were determined. Orthorhombic polymorph 1a (space group Pbcn, Z = 4) consists of infinite chains of alternating cations and anions with all gold atoms lying on a twofold axis, whereas triclinic polymorph 1b (space group P1̅, Z = 2) contains isolated tetranuclear units cation···anion···anion···cation with inversion symmetry. In both patterns the gold atoms are linked by short aurophilic contacts. Attempts to recrystallize 1b from dichloromethane-diethyl ether led to small quantities of tetrapyridinium bis(dithiocyanatogold(I)) sulfate (2), (pyH)4[Au(SCN)2]2(SO4), which was identified by crystal structure analysis. The cations are associated with the sulfate ions by classical hydrogen bonds; aurophilic interactions between the anions lead to dimers, which further associate to chains by Au···S contacts.


Author(s):  
Dominik Langer ◽  
Barbara Wicher ◽  
Wojciech Szczołko ◽  
Maria Gdaniec ◽  
Ewa Tykarska

The crystal structures of three ester derivatives of glycyrrhetinic acid (GE) are reported. X-ray crystallography revealed that despite differences in the size of the ester substituents (ethyl, isopropyl and 2-morpholinoethyl) the scheme of molecular self-assembly is similar in all three cases but differs significantly from that observed in other known GE esters. According to our analysis, the two basic patterns of self-assembly of GE esters observed in their unsolvated crystals correspond to two distinct orientations of the ester groups relative to the triterpene backbone. Moreover, comparison of the self-assembly modes of GE esters in their unsolvated forms with the supramolecular organization of GE and carbenoxolone in their solvated crystals revealed that ester substituents replace solvent molecules hydrogen bonded to the COOH group at the triterpene skeleton, resulting in similar packing arrangements of these compounds.


1992 ◽  
Vol 57 (11) ◽  
pp. 2309-2314 ◽  
Author(s):  
Josef Loub ◽  
Zdeněk Mička ◽  
Jana Podlahová ◽  
Karel Malý ◽  
Jürgen Kopf

Structure of sodium hydrogen selenite-selenious acid (1:3) was solved by heavy-atom method and refined anisotropically to R = 0.098 for 1223 unique observed reflections. The title compound crystallizes in the Pc space group with a = 5.756(2), b = 4.911(2), c = 20.010(5) Å, β = 100.48(3)°, V = 556(1) Å3, T = 293 K, (a = 5.763(2), b = 4.878(1), c = 20.03(1) Å, β = 100.48(3)°, V = 554(1) Å3, T = 173 K), Z = 2. The structure consist of HSeO3- anions, molecules of selenious acid and Na+ cations which are octahedrally coordinated with oxygen atoms. The structure is stabilized by a system of hydrogen bonds.


Sign in / Sign up

Export Citation Format

Share Document