A study of a variety of O,O-alkylene dithiophosphate derivatives of triphenyl-and diphenylgermane. Crystal structures of and

1995 ◽  
Vol 73 (7) ◽  
pp. 915-928 ◽  
Author(s):  
John E. Drake ◽  
Anil G. Mislankar ◽  
Raju Ratnani ◽  
Jincai Yang

The O,O-alkylene dithiophosphate derivatives of triphenyl- and diphenylgermane, [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] [Formula: see text] and [Formula: see text] have been prepared and characterized by infrared, Raman, and 1H, 13C, and 31P NMR spectroscopy, mass spectrometry, and, in three cases, X-ray crystallography. [Formula: see text] 1, crystallizes as monoclinic in the space group P21/a (No. 14) with the cell parameters a = 12.868(5) Å, b = 11.354(4) Å, c = 17.207(4) Å, β = 95.42(2)°, V = 2502(1) Å3, Z = 4, R = 0.0640, and Rw = 0.0585. [Formula: see text] 2, crystallizes as orthorhombic in the space group Pbca (No. 61) with the cell parameters a = 23.007(4) Å, b = 16.840(4) Å, c = 12.068(3) Å, V = 4657(3) Å3, Z = 8, R = 0.0502, and Rw = 0.0329. [Formula: see text] 3, crystallizes as monoclinic in the space group C2/c (No. 15) with the cell parameters a = 35.48(2) Å, b = 9.275(5) Å, c = 20.78(1) Å, β = 120.93(3)° V = 5866(5) Å3, Z = 8, R = 0.0674, and Rw = 0.0562. As with their methylgermanium analogues, the environment about germanium is essentially that of a distorted tetrahedron, with the terminal sulfur atoms oriented towards germanium rather than away from it, in contrast with analogous noncyclic dithiophosphatogermanes. The substituents on the atoms in both the five- and six-membered rings maintain their nonequivalence in solution, in contrast with tin analogues. Keywords: structure, germanium, diphenyl, triphenyl, cyclic dithiophosphates

2016 ◽  
Vol 71 (3) ◽  
pp. 231-239 ◽  
Author(s):  
Roumaissa Belguedj ◽  
Sofiane Bouacida ◽  
Hocine Merazig ◽  
Ali Belfaitah ◽  
Aissa Chibani ◽  
...  

AbstractThree benzoindolizine derivatives, 1, 2, and 3, were obtained via 1,3-dipolar cycloaddition. The reaction of 1-(2′-benzimidazolylmethyl)isoquinolinium ylides with dimethyl acetylenedicarboxylate gave a mixture of pyrrolo[2,1-a]isoquinoline-1,2-dicarboxylate (1) and 1,10b-dihydropyrrolo[2,1-a]isoquinoline-1,2-dicarboxylate (2) derivatives containing a benzimidazole moiety. The reaction of this isoquinolinium N-ylide with dimethyl maleate gave an unexpected 2,3-dihydropyrrolo[2,1-a]isoquinoline-1,2-dicarboxylate (3). The structures of all reported compounds have been examined by X-ray crystallography, mass spectrometry, and NMR spectroscopy.


2005 ◽  
Vol 58 (7) ◽  
pp. 522
Author(s):  
Richard J. Bowen ◽  
Judy Caddy ◽  
Mabel E. Coyanis ◽  
Manuel A. Fernandes ◽  
Marcus Layh ◽  
...  

The 2-oxomalonylbis(arylimidoyl) chlorides [C6H3(R2-2,6)N=CCl]2CO (R = Me, 3a; Pri, 3b; H, 3c) were synthesized from C6H3(R2-2,6)NHCHO and an excess of (COCl2)3 and their reaction with various nucleophiles was studied. Successive hydrolysis of 3a led to the formation of [C6H3(Me2-2,6)N=CCl]3COH 4a and [C6H3(Me2-2,6)NHCO]3COH 5a, while treatment of 3a with HAuCl4(H2O)x gave {[C6H3(Me2-2,6)N(H)=CCl][C6H3(Me2-2,6)NHCO]2COH}AuCl4 6a. All compounds were fully characterized by microanalysis, NMR spectroscopy, mass spectrometry, and, in the case of 3a, 4a, 5a, and 6a, by X-ray crystallography.


1998 ◽  
Vol 76 (3) ◽  
pp. 319-334 ◽  
Author(s):  
John E Drake ◽  
Jincai Yang

Two series of S-alkyl trithiocarbonate derivatives of imethylgermane, Me2Ge[S2CSR]2, and halodiphenylgermane, Ph2GeX[S2CSR], where R = Me, i-Pr, n-Pr, n-Bu and X = Cl, Br, and three series of O-alkyl monothiocarbonate derivatives of triphenylgermane, Ph3Ge[SCO2R], diphenylgermane, Ph2Ge[SCO2R], and trimethylgermane, me3Ge[SCO2R], where R = Me, i-Pr, and n-Pr, have been prepared in 73-92% yields by the reaction of the potassium or sodium salt of the appropriate tri- or monothiocarbonic acid with dichlorodimethyl-, chlorotriphenyl-, dichlorodiphenyl-, and chlorotrimethylgermane. The compounds were principally characterized by infrared, Raman, and 1H and 13C NMR spectroscopy, including some variable temperature studies, as well as by mass spectrometry. Me2Ge[S2CSEt]2, 1: P21/m (No. 11) with cell parameters a = 6.647(4) Å, b = 7.423(2) Å, c = 16.290(4) Å, β = 91.07(3)°, V = 803.6(4) Å3, Z = 2, R = 0.0484,Rw = 0.0485. Ph3Ge[SCO2Me],13: P1bar (No. 2) with cell parameters a = 9.970(4) Å, b = 10.660(3) Å, c = 9.853(2) Å, α = 101.78(2)°, β = 109.98(2)°, γ = 89.76(3)°, V = 961.0(5) Å3, Z = 2, R = 0.0534, Rw = 0.0451. Ph3Ge[SCO2(i-Pr)], 14: P 1bar (No. 2) with cell parameters a = 14.386(7) Å, b = 18.598(6) Å, c = 9.223(3) Å, α = 102.85(3)°, β = 94.58(3)°, γ = 108.13(3)°, V = 2256(1) Å3, Z = 2, R = 0.0545, Rw = 0.0552. Ph2Ge[SCO2Me]2, 16: Cc, (No. 9) with cell parameters a = 11.790(4) Å, b = 13.696(5) Å, c = 23.232(6) Å, β = 92.26(3)°, V = 3748(2) Å3, Z = 8, R = 0.0563, Rw = 0.0512. The immediate environment about Ge is that of tetrahedral but the orientations of the thiocarbonate groups display interesting features.Key words: structure, germanium, phenyl, methyl, thiocarbonates.


1993 ◽  
Vol 48 (6) ◽  
pp. 771-777 ◽  
Author(s):  
Ulrich Abram ◽  
Bernd Lorenz

Novel rhenium complexes with terminal thiocarbonyl groups have been synthesized from ReCl3(Me2PhP)3 and sodium diethyldithiocarbamate. mer-(Diethyldithiocarbamato)tris-(dimethylphenylphosphine)(thiocarbonyl)rhenium(I), mer-[Re(CS)(Me2PhP)3(Et2dtc)], and tris(diethyldithiocarbamato)(thiocarbonyl)rhenium(III), [Re(CS)(Et2dtc)3] have been studied by infrared and NMR spectroscopy, mass spectrometry and X-ray diffraction.mer-[Re(CS)(Me2PhP)3(Et2dtc)] crystallizes orthorhombic in the space group Pna21 with a = 1516.1(2), b = 2189.8(2) and c = 1035.6(1) pm. Structure solution and refinement converged at R = 0.042. The coordination geometry is a distorted octahedron. The Re—C bond length is found to be 184(2) pm.[Re(CS)(Et2dtc)3] crystallizes monoclinic in the space group P21/c with a = 962.2(6), b = 1744.0(2), c = 1537.4(6) pm and β = 96.21(1)°. The final R value is 0.028. In the monomeric complex the rhenium atom is seven-coordinate with an approximate pentagonal-bipyramidal coordination sphere and a rhenium-carbon distance of 181(1) pm.


2005 ◽  
Vol 58 (3) ◽  
pp. 199 ◽  
Author(s):  
Ethan D. Goddard-Borger ◽  
Brian W. Skelton ◽  
Robert V. Stick ◽  
Allan H. White

The use of 1H NMR spectroscopy, in tandem with X-ray crystallography, has cast light on the conformation of the 1,6-disulfide-bridged derivatives of d-gluco-, d-manno-, d-allo-, d-galacto-, and d-talo-pyranose. A similar investigation was performed on the thiosulfinate derived from the d-gluco disulfide. Single-crystal X-ray structure determinations are reported for (1S,5S,6S,7S,8R)-6,7,8-tribenzoyloxy-9-oxa-2,3-dithiabicyclo[3.3.1]nonane, (1S,5S,6S,7R,8R)-6,7,8-tribenzoyloxy-9-oxa-2,3-dithiabicyclo[3.3.1]nonane, and (1S,2S,5S,6S,7S,8R)-6,7,8-triacetoxy-9-oxa-2,3-dithiabicyclo[3.3.1]nonane 2-oxide.


CrystEngComm ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 1539-1542 ◽  
Author(s):  
Thomas Fellowes ◽  
Jonathan M. White

A number of derivatives of benzisoselenazolinones, including the drug ebselen, have been synthesized, and their interactions with various nitrogen bases characterized through X-ray crystallography.


2017 ◽  
Vol 70 (12) ◽  
pp. 1269
Author(s):  
Steven Gareth Williams ◽  
Mohan Bhadbhade ◽  
Roger Bishop ◽  
Alison Thavary Ung

The reaction of (–)-β-pinene with KCN under a mild bridged Ritter reaction gave (1S,5R,6S)-2,2,6-trimethyl-3-aza-bicyclo[3.3.1]non-3-en-6-yl acetate that subsequently reacted to provide an unexpected (1S,4R,5R,6S)-4-cyano-2,2,6-trimethyl-3-azabicyclo[3.3.1]nonane-6-yl acetate. The structure of the compound was determined by high-resolution mass spectrometry, and IR and NMR spectroscopy and confirmed by single crystal X-ray crystallography. The compound crystallises in the monoclinic P21 space group, with unit cell parameters a 8.6120 (17), b 7.4570 (15), c 11.189 (2) Å, and β 110.16 (3)°.


1993 ◽  
Vol 71 (7) ◽  
pp. 1086-1093 ◽  
Author(s):  
Liqin Chen ◽  
Laurence K. Thompson ◽  
John N. Bridson

The preparation and properties of the thioether–pyridazine macrocycle (L4; C16H20S6N4) containing two pyridazine subunits, and its Cu(II), Cu(II)Cu(I), and Cu(I) complexes are described. The ligand is characterized by 1H nuclear magnetic resonance and mass spectrometry, and the complexes by infrared, eleetronic spectra, and magnetism, and in some cases by X-ray crystallography. The complex [Cu2(L4)Cl4]x, (1) crystallized in the triclinic system, space group [Formula: see text] with a = 8.6204(8) Å, b = 9.850(1) Å, c = 8.348(1) Å, α = 111.46(1)°, β = 102.50(1)°, γ = 71.818(9)°, V = 622.6(1) Å3, and Z = 1 (R = 0.043, Rw = 0.042 for 1312 reflections). Two monodentate pyridazine rings in the same ligand bind to one trans square-planar copper centre (CuN2Cl2) with two sulfurs from each ligand binding to another trans square-planar copper centre (CuS2Cl2) to form a polynuclear chain. The complex [Cu(L4)Cl2] (3) crystallized in the triclinic system, space group [Formula: see text] with a = 11.001(1) Å, b = 12.888(2) Å, c = 8.704(1) Å, α = 102.89(1)°, β = 103.36(1)°,γ = 75.84(1)°, V = 1145.8(3) Å3 and Z = 2 (R = 0.056, Rw = 0.044 for 2059 reflections). A trans square-planar structure (CuN2Cl2) exists for 3 with monodentate pyridazines. [Cu(L4)(NO3)2] (4) crystallized in the orthorhombic system, space group P212121, with a = 15.148(2) Å, b = 15.562(3) Å, c = 11.064(1) Å, V = 2608.2(7) Å3 and Z = 4 (R = 0.039, Rw = 0.034 for 1864 reflections). Two monodentate pyridazine rings and two bidentate nitrates bind to a pseudo-octahedral copper(II) centre.


1997 ◽  
Vol 62 (8) ◽  
pp. 1310-1324 ◽  
Author(s):  
Sergei V. Ivanov ◽  
Svetlana M. Ivanova ◽  
Susie M. Miller ◽  
Oren P. Anderson ◽  
Nikolai T. Kuznetsov ◽  
...  

The treatment of salts of the B10H102- anion with the commercially available N-fluoro reagent 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (F-TEDA) resulted in the formation of fluorinated derivatives of this ten-vertex borane dianion. The effects of changing the solvent, temperature, and reagent stoichiometry were studied. The derivatives 1-B10H9F2-, 2-B10H9F2-, 1,2-B10H8F22-, 1,6-B10H8F22-, 1,10-B10H8F22-, and 1,2,10-B10H7F32- were examined by a combination of 11B and 19F NMR spectroscopy and by IR spectroscopy. The salt [Ph4P]2[1,10-B10H8F2] . 3 CH2Cl2 was structurally characterized by single-crystal X-ray crystallography: C51H48B10Cl6F2P2, monoclinic, C2/c, a = 13.8134(9), b = 19.141(1), c = 21.136(1) Å, β = 91.546(1)°, Z = 4, T = -100 °C, R = 0.077.


Sign in / Sign up

Export Citation Format

Share Document