In-situ high-pressure study of the ordered phase of ethyl propionate

2007 ◽  
Vol 63 (1) ◽  
pp. 111-117 ◽  
Author(s):  
Roman Gajda ◽  
Andrzej Katrusiak

Ethyl propionate, C5H10O2 (m.p. 199 K), has been in-situ pressure-frozen and its structure determined at 1.34, 1.98 and 2.45 GPa. The crystal structure of the new high-pressure phase (denoted β) is different from phase α obtained by lowering the temperature. The freezing pressure of ethyl propionate at 296 K is 1.03 GPa. The molecule assumes an extended chain s-trans–trans–trans conformation, only slightly distorted from planarity. The closest intermolecular contacts in both phases are formed between carbonyl O and methyl H atoms; however, the ethyl-group H atoms in phase β form no contacts shorter than 2.58 Å. A considerable molecular volume difference of 24.2 Å3 between phases α and β can be rationalized in terms of degrees of freedom of molecules arranged into closely packed structures: the three degrees of freedom allowed for rearrangements of molecules confined to planar sheets in phase α, but are not sufficient for obtaining a densely packed pattern.

Author(s):  
Rebecca Scatena ◽  
Michał Andrzejewski ◽  
Roger D Johnson ◽  
Piero Macchi

Through in-situ, high-pressure x-ray diffraction experiments we have shown that the homoleptic perovskite-like coordination polymer [(CH3)2NH2]Cu(HCOO)3 undergoes a pressure-induced orbital reordering phase transition above 5.20 GPa. This transition is distinct...


Author(s):  
A. H. S. Iyer ◽  
M. H. Colliander

Abstract Background The trend in miniaturisation of structural components and continuous development of more advanced crystal plasticity models point towards the need for understanding cyclic properties of engineering materials at the microscale. Though the technology of focused ion beam milling enables the preparation of micron-sized samples for mechanical testing using nanoindenters, much of the focus has been on monotonic testing since the limited 1D motion of nanoindenters imposes restrictions on both sample preparation and cyclic testing. Objective/Methods In this work, we present an approach for cyclic microcantilever bending using a micromanipulator setup having three degrees of freedom, thereby offering more flexibility. Results The method has been demonstrated and validated by cyclic bending of Alloy 718plus microcantilevers prepared on a bulk specimen. The experiments reveal that this method is reliable and produces results that are comparable to a nanoindenter setup. Conclusions Due to the flexibility of the method, it offers straightforward testing of cantilevers manufactured at arbitrary position on bulk samples with fully reversed plastic deformation. Specific microstructural features, e.g., selected orientations, grain boundaries, phase boundaries etc., can therefore be easily targeted.


2002 ◽  
Vol 106 (1) ◽  
pp. 30-33 ◽  
Author(s):  
Hiroyasu Shimizu ◽  
Tatsuya Kumazaki ◽  
Tetsuji Kume ◽  
Shigeo Sasaki

2009 ◽  
Vol 131 (09) ◽  
pp. 32-36
Author(s):  
James G. Skakoon

This article discusses the significance of knowing exact constraint in successful design. Although not traditionally taught in mechanical engineering curricula, and not universally known among mechanical engineers, principles of exact constraint have been around for over a century. Designers of precision instruments have for decades used exact constraint, without which they simply would not achieve the precision required by many devices. Exact constraint has a well-developed theory applicable for design engineers. Applying it improves designs by avoiding over-constraint. Over-constrained designs lead to high stresses, tight tolerances, looseness, binding, and difficult assembly. Exact constraint is easier to picture in two dimensions than in three. In two dimensions, there are three degrees of freedom: two translations and one rotation. Some useful compromises to exact constraint are pinned and bolted connections, ball bearings, and tapered roller bearings. Another is in-situ adjustment of over-constraint as in, for example, the thread-adjusted foot pads of a clothes dryer or washing machine.


2004 ◽  
Vol 59 (2) ◽  
pp. 202-215 ◽  
Author(s):  
Holger Emme ◽  
Tanja Nikelski ◽  
Thomas Schleid ◽  
Rainer Pöttgen ◽  
Manfred Heinrich Möller ◽  
...  

The new orthorhombic meta-oxoborates RE(BO2)3 (≡REB3O6) (RE = Dy-Lu) have been synthesized under high-pressure and high-temperature conditions in a Walker-type multianvil apparatus at 7.5 GPa and 1100 °C. They are isotypic to the known ambient pressure phase Tb(BO2)3, space group Pnma. In contrast to Dy(BO2)3, which was also obtained in small amounts under high-temperature conditions, the preparation of the higher orthorhombic homologues RE(BO2)3 (RE = Ho-Lu) was only possible using high-pressure. The meta-oxoborates RE(BO2)3 (RE = Dy-Er) were synthesized as pure products, whereas the orthorhombic phases with RE = Tm-Lu were only obtained as byproducts. With the exception of Yb(BO2)3 it was possible to establish single crystal data for all compounds. The results of temperature-resolved in-situ powder-diffraction measurements, DTA, IR-spectroscopic investigations, and magnetic properties are also presented.


2019 ◽  
Vol 792 ◽  
pp. 536-542
Author(s):  
Larissa da Silva Marques ◽  
Joelma Maria de Oliveira Ferreira ◽  
Querem Hapuque Félix Rebelo ◽  
Angsula Ghosh ◽  
Daniela Menegon Trichês ◽  
...  

2019 ◽  
Vol 36 (4) ◽  
pp. 046103 ◽  
Author(s):  
Sheng Jiang ◽  
Jing Liu ◽  
Xiao-Dong Li ◽  
Yan-Chun Li ◽  
Shang-Ming He ◽  
...  

2011 ◽  
Vol 184 (3-4) ◽  
pp. 154-159 ◽  
Author(s):  
Tingting Gu ◽  
Xiang Wu ◽  
Shan Qin ◽  
Leonid Dubrovinsky

2014 ◽  
Vol 513-517 ◽  
pp. 4047-4051
Author(s):  
Xiao Meng Li ◽  
Shu Ce Zhang ◽  
Yong Liu ◽  
Xue Heng Tao ◽  
Xue Jun Wang ◽  
...  

In order to solve the problem that manual cleaning high-altitude monitoring camera is difficult and risky, the scheme that mobile knee-type robot with three degrees of freedom cleans the monitoring probe instead of worker is proposed, and the control system based on MCU is designed. The hardware and program design is finished, which includes movement of manipulator, cameras jet cleaning with high-pressure spray gun, drying of cameras surface, ultrasonic obstacle avoidance, camera monitoring and image processing module. At last, the experiment and test for the cleaning robot prototype are carried out.


Sign in / Sign up

Export Citation Format

Share Document