A practical method of three-dimensional space-group analysis using convergent-beam electron diffraction

1975 ◽  
Vol 31 (6) ◽  
pp. 804-810 ◽  
Author(s):  
P. Goodman
2021 ◽  
Vol 77 (3) ◽  
pp. 222-231
Author(s):  
Hirofumi Matsuhata

The contrast of Gjønnes–Moodie (GM) lines which appear in convergent-beam electron diffraction patterns for non-symmorphic space-group crystals is explained using Bloch waves. In the two-dimensional space groups p2mg and pg the Bloch waves for electron diffraction are described. In both space groups along the Δ line, Bloch waves are arranged as two different types, and it is shown that the two types of Bloch waves do not contribute to the intensity of forbidden reflections. Along the position where the forbidden reflection satisfies the Bragg condition, degeneracies of two Bloch waves are found and it is shown that the degenerated pair of Bloch waves do not contribute to the intensity. These Bloch-wave results provide a new perspective in the understanding of the contrast mechanism of GM lines previously described using scattering polynomials. They also advance the understanding of Bloch-wave behaviour in high-energy electron diffraction.


2002 ◽  
Vol 382 (4) ◽  
pp. 422-430 ◽  
Author(s):  
Takuya Hashimoto ◽  
Kenji Tsuda ◽  
Junichiro Shiono ◽  
Junichiro Mizusaki ◽  
Michiyoshi Tanaka

2000 ◽  
Vol 69 (7) ◽  
pp. 1939-1941 ◽  
Author(s):  
Kenji Tsuda ◽  
Shuichi Amamiya ◽  
Michiyoshi Tanaka ◽  
Yukio Noda ◽  
Masahiko Isobe ◽  
...  

2019 ◽  
Vol 75 (3) ◽  
pp. 489-500
Author(s):  
Ding Peng ◽  
Philip N. H. Nakashima

The rare earth hexaborides are known for their tendency towards very high crystal perfection. They can be grown into large single crystals of very high purity by inert gas arc floating zone refinement. The authors have found that single-crystal cerium hexaboride grown in this manner contains a significant number of inclusions of an impurity phase that interrupts the otherwise single crystallinity of this prominent cathode material. An iterative approach is used to unequivocally determine the space group and the lattice parameters of the impurity phase based on geometries of convergent-beam electron diffraction (CBED) patterns and the symmetry elements that they possess in their intensity distributions. It is found that the impurity phase has a tetragonal unit cell with space group P4/mbm and lattice parameters a = b = 7.23 ± 0.03 and c = 4.09 ± 0.02 Å. These agree very well with those of a known material, CeB4. Confirmation that this is indeed the identity of the impurity phase is provided by quantitative CBED (QCBED) where the very close match between experimental and calculated CBED patterns has confirmed the atomic structure. Further confirmation is provided by a density functional theory calculation and also by high-angle annular dark-field scanning transmission electron microscopy.


1992 ◽  
Vol 31 (Part 2, No. 2A) ◽  
pp. L109-L112 ◽  
Author(s):  
Masakazu Saito ◽  
Michiyoshi Tanaka ◽  
An Pang Tsai ◽  
Akihisa Inoue ◽  
Tsuyoshi Masumoto

1984 ◽  
Vol 33 (11) ◽  
pp. 1586
Author(s):  
YANG CUI-YING ◽  
FENG GUO-GANG ◽  
ZHOU YU-QING ◽  
TANG DI-SHENG

Author(s):  
Dang-Rong Liu ◽  
D. B. Williams

It is interesting to note that for the diamond type structure of Si, Ge and diamond, the forbidden {200} reflections in the exact <100> orientation diffraction pattern cannot be seen. In contrast, we also note a standing controversy over the structure of the MgAl2O4, spinel. Its structure was determined long ago by x-ray powder method as Fd3m (the diamond type). However, its electron diffraction pattern taken in the <100> orientation shows weak {200} reflections, which are taken as evidence that the spinel should have the space group F43m (the blende type), rather than Fd3m. Others speculate that these {200} reflections result from the high order Laue zone (HOLZ) reflections, and the spinel should be Fd3m. Nevertheless, still others think that these analyses are not conclusive. We have carefully studied the space group of TiBe2 using the convergent beam electron diffraction technique, and unambiguously demonstrated that its space group must be Fd3m.


Sign in / Sign up

Export Citation Format

Share Document