scholarly journals A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

2013 ◽  
Vol 20 (5) ◽  
pp. 765-776 ◽  
Author(s):  
Guillaume Pompidor ◽  
Florian S. N. Dworkowski ◽  
Vincent Thominet ◽  
Clemens Schulze-Briese ◽  
Martin R. Fuchs

The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of thein situon-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

2009 ◽  
Vol 16 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Robin L. Owen ◽  
James M. Holton ◽  
Clemens Schulze-Briese ◽  
Elspeth F. Garman

Accurate measurement of photon flux from an X-ray source, a parameter required to calculate the dose absorbed by the sample, is not yet routinely available at macromolecular crystallography beamlines. The development of a model for determining the photon flux incident on pin diodes is described here, and has been tested on the macromolecular crystallography beamlines at both the Swiss Light Source, Villigen, Switzerland, and the Advanced Light Source, Berkeley, USA, at energies between 4 and 18 keV. These experiments have shown that a simple model based on energy deposition in silicon is sufficient for determining the flux incident on high-quality silicon pin diodes. The derivation and validation of this model is presented, and a web-based tool for the use of the macromolecular crystallography and wider synchrotron community is introduced.


2007 ◽  
Vol 29 (4) ◽  
pp. 32-35
Author(s):  
Armin Wagner

X-ray diffraction is the method of choice to determine structural information from biological mac romolecules to atomic resolution. This technique depends on the availability of single crystals of protein, which are notoriously difficult to produce. It can take months or even years to find crystal lization conditions capable of producing crystals with sufficient diffraction quality. During the last few years the field of MX (macromolecular crystallography) has undergone considerable change and most of the steps from protein expression to structure solution have been automated, speeding up the process significantly. Facilities such as Diamond Light Source, the new UK synchrotron radia tion source in Oxfordshire, have been developed to incorporate new automation technologies and Diamond will provide an important user resource for XRD (X-ray diffraction) experiments on crystals of biological macromolecules. Furthermore, in collaboration with Professor So Iwata (Imperial College and Diamond Light Source) and funded by the Wellcome Trust, Diamond Light Source is developing a laboratory dedicated specifically to solving the structure of membrane proteins, the crystallization of which poses a particular problem to the crystallographer.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1735-C1735
Author(s):  
James Gorin ◽  
Shaunivan Labiuk ◽  
Julien Cotelesage ◽  
Kathryn Janzen ◽  
Michel Fodje ◽  
...  

The Canadian Macromolecular Crystallography Facility (CMCF) at the Canadian Light Source consists of two macromolecular crystallography beamlines for structure determination using x-ray diffraction. The equipment at the CMCF beamlines have undergone or will undergo changes and improvements to better meet the needs of the most challenging experiments users may present. Among these improvements are: 1) Automounter improvements; 2) Better goniometry on 08ID-1 with the addition of a Huber air-bearing goniometer; 3) Added beam size capabilities on 08ID-1 with the addition of a multiple beam defining aperture holder; 4) XAFS capability on 08B1-1; 5) Improved low energy S-SAD data collection with the addition of a Helium path; 6) Improvements to the data collection and data management software; 7) A vacuum path for scattering experiments with detector distances up to 1 m; 8) A comprehensive beamline upgrade project on the 08ID-1 beamline; and 9) Service crystallography services.


Crystals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 273 ◽  
Author(s):  
José Brandão-Neto ◽  
Leonardo Bernasconi

Macromolecular crystallography at cryogenic temperatures has so far provided the majority of the experimental evidence that underpins the determination of the atomic structures of proteins and other biomolecular assemblies by means of single crystal X-ray diffraction experiments. One of the core limitations of the current methods is that crystal samples degrade as they are subject to X-rays, and two broad groups of effects are observed: global and specific damage. While the currently successful approach is to operate outside the range where global damage is observed, specific damage is not well understood and may lead to poor interpretation of the chemistry and biology of the system under study. In this work, we present a phenomenological model in which specific damage is understood as the result of a single process, the steady excitation of crystal electrons caused by X-ray absorption, which acts as a trigger for the bulk effects that manifest themselves in the form of global damage and obscure the interpretation of chemical information from XFEL and synchrotron structural research.


2018 ◽  
Vol 2 (1) ◽  
pp. 4 ◽  
Author(s):  
Camelia Stan ◽  
Christine Beavers ◽  
Martin Kunz ◽  
Nobumichi Tamura

2018 ◽  
Vol 24 (S2) ◽  
pp. 172-175 ◽  
Author(s):  
Mirko Holler ◽  
Jorg Raabe ◽  
Ana Diaz ◽  
Manuel Guizar-Sicairos ◽  
Esther H. R. Tsai ◽  
...  

2002 ◽  
Author(s):  
Marco Stampanoni ◽  
Peter Wyss ◽  
Rafael Abela ◽  
Gunther L. Borchert ◽  
Detlef Vermeulen ◽  
...  

IUCrJ ◽  
2015 ◽  
Vol 2 (5) ◽  
pp. 534-544 ◽  
Author(s):  
S. Fili ◽  
A. Valmas ◽  
M. Norrman ◽  
G. Schluckebier ◽  
D. Beckers ◽  
...  

This study focuses on the effects of the organic ligand 4-ethylresorcinol on the crystal structure of human insulin using powder X-ray crystallography. For this purpose, systematic crystallization experiments have been conducted in the presence of the organic ligand and zinc ions within the pH range 4.50–8.20, while observing crystallization behaviour around the isoelectric point of insulin. High-throughput crystal screening was performed using a laboratory X-ray diffraction system. The most representative samples were selected for synchrotron X-ray diffraction measurements, which took place at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS). Four different crystalline polymorphs have been identified. Among these, two new phases with monoclinic symmetry have been found, which are targets for the future development of microcrystalline insulin drugs.


Sign in / Sign up

Export Citation Format

Share Document