scholarly journals Inverse-phase composite zone plate providing deeper focus than the normal diffraction-limited depth of X-ray microbeams

2019 ◽  
Vol 26 (1) ◽  
pp. 52-58
Author(s):  
Yasushi Kagoshima ◽  
Yuki Takayama

A novel type of zone plate (ZP), termed an inverse-phase composite ZP, is proposed to gain a deeper focus than the standard diffraction-limited depth of focus, with little reduction in spatial resolution. The structure is a combination of an inner ZP functioning as a conventional phase ZP and an outer ZP functioning with third-order diffraction with opposite phase to the inner ZP. Two-dimensional complex amplitude distributions neighboring the focal point were calculated using a wave-optical approach of diffraction integration with a monochromatic plane-wave illumination, where one dimension is the radial direction and the other dimension is the optical-axis direction. The depth of focus and the spatial resolution were examined as the main focusing properties. Two characteristic promising cases regarding the depth of focus were found: a pit-intensity focus with the deepest depth of focus, and a flat-intensity focus with deeper depth of focus than usual ZPs. It was found that twice the depth of focus could be expected with little reduction in the spatial resolution for 10 keV X-ray energy, tantalum zone material, 84 nm minimum fabrication zone width, and zone thickness of 2.645 µm. It was also found that the depth of focus and the spatial resolution were almost unchanged in the photon energy range from 8 to 12 keV. The inverse-phase composite ZP has high potential for use in analysis of practical thick samples in X-ray microbeam applications.

1998 ◽  
Vol 4 (S2) ◽  
pp. 808-809
Author(s):  
A.P. Hitchcock ◽  
S.G. Urquhart ◽  
H. Ade ◽  
E.G. Rightor ◽  
W. Lidy

Phase segregation is important in determining the properties of many complex polymers, including polyurethanes. Achieving a better understanding of the links between formulation, chemical nature of segregated phases, and physical properties, has the potential to aid development of improved polymers. However, the sub-micron size of segregated features precludes detailed chemical analysis by most existing methods. Zone-plate based, scanning transmission X-ray microscopes (STXM) at NSLS and ALS provide quantitative chemical analysis (speciation) of segregated polymer phases at ∼50 nm spatial resolution. Image sequences acquire much more data with less radiation damage, than spot spectra. After alignment, they provide high quality near edge spectra, and thus quantitative analysis, at full spatial resolution.Fig. 1 shows an image and spectra acquired with the NSLS STXM of a macro-phase segregated TDI polyurethane. Spectral decomposition using model polymer spectra is used to measure the local urea, urethane and polyether content.


2006 ◽  
Vol 89 (22) ◽  
pp. 221122 ◽  
Author(s):  
Gung-Chian Yin ◽  
Yen-Fang Song ◽  
Mau-Tsu Tang ◽  
Fu-Rong Chen ◽  
Keng S. Liang ◽  
...  

2011 ◽  
Author(s):  
S. Rehbein ◽  
P. Guttmann ◽  
S. Werner ◽  
G. Schneider ◽  
Ian McNulty ◽  
...  
Keyword(s):  
X Ray ◽  

2021 ◽  
pp. 1-6
Author(s):  
Matthew A. Marcus ◽  
David A. Shapiro ◽  
Young-Sang Yu

Scanning transmission X-ray microscopy is a powerful method for mapping chemical phases in nano-materials. The point spread function (PSF) of a conventional zone-plate-based microscope limits the achievable spatial resolution and also results in spatially resolved spectra that do not accurately reflect the spatial heterogeneity of the samples when the scale of the detail approaches the probe size. X-ray ptychography, a coherent-scattering-based imaging scheme that effectively removes the probe from the image data, returns accurate spectra from regions smaller than the probe size. We show through simulation how the long tails on the PSF of an x-ray optic can cause spectral distortion near a boundary between two spectrally distinct regions. The resulting apparent point spectra can appear mixed, with the species on one side of the boundary seeming to be present on the other even at a distance from the boundary equal to several times the spatial resolution. We further demonstrate the effect experimentally and show that ptychographic microscopy can return the expected spectra from a model system, whereas conventional microscopy does not.


Author(s):  
Daniel Tarrazó-Serrano ◽  
Sergio Castiñeira-Ibáñez ◽  
Oleg V. Minin ◽  
Pilar Candelas ◽  
Constanza Rubio ◽  
...  

The image performance of acoustic and ultrasound sensors depends on several fundamental parameters such as depth of focus or spatial resolution. There are currently two different type of acoustic diffractive lenses: those which form a diffraction-limited spot with a shallow depth of focus (zone plates) and lenses which form an extended focus (quasi-Bessel beams). In this paper, we investigate a pupil-masked Soret zone plate which allows the tunability of a normalized angular spectrum. It is shown that the depth of focus and the spatial resolution can be modified, without changing the lens structure, by choosing the size of the amplitude pupil mask. This effect is based on the transformation of spherically converging waves into quasi-conical waves, due to the apodization of the central part of the zone plate. The theoretical analysis is verified with both numerical simulations and experimental measurements. A Soret zone plate immersed in water with D/2F=2.5 and F=4.5$\lambda$, changes its depth of focus from 2.84$\lambda$ to 5.9$\lambda$ and the spatial resolution increases from 0.81$\lambda$ to 0.64$\lambda$ at a frequency of 250 kHz, by modifying the pupil mask dimensions of the Soret zone plate.


1998 ◽  
Vol 4 (S2) ◽  
pp. 352-353
Author(s):  
W. Meyer-Ilse ◽  
J. T. Brown ◽  
C. Magowan ◽  
J. Yeung ◽  
K. E. Kurtis ◽  
...  

The Center for X-ray Optics (CXRO) built and operates a high-resolution soft x-ray microscope (XM-1) at the Advanced Light Source in Berkeley. We report on the use of this instrument in a variety of scientific fields, including biology, civil engineering and environmental sciences.The microscope is a conventional (full field) x-ray microscope, which uses zone plate lenses to provide high resolution transmission images. The optical setup is similar to the Göttingen x-ray microscope, operated at the BESSY synchrotron radiation facility in Berlin, Germany. A condenser zone plate, fabricated by the Göttingen group, is illuminating the sample and an objective zone plate, fabricated by Erik Anderson (CXRO), is forming an enlarged image on an x-ray CCD camera. While the optical path of the microscope is in vacuum, the sample is at atmospheric pressure, flushed by helium. The spatial resolution of our microscope is 43 nm, measured as the distance from 10%-90% intensity in the image of a knife-edge.


Author(s):  
R. Hutchings ◽  
I.P. Jones ◽  
M.H. Loretto ◽  
R.E. Smallman

There is increasing interest in X-ray microanalysis of thin specimens and the present paper attempts to define some of the factors which govern the spatial resolution of this type of microanalysis. One of these factors is the spreading of the electron probe as it is transmitted through the specimen. There will always be some beam-spreading with small electron probes, because of the inevitable beam divergence associated with small, high current probes; a lower limit to the spatial resolution is thus 2αst where 2αs is the beam divergence and t the specimen thickness.In addition there will of course be beam spreading caused by elastic and inelastic interaction between the electron beam and the specimen. The angle through which electrons are scattered by the various scattering processes can vary from zero to 180° and it is clearly a very complex calculation to determine the effective size of the beam as it propagates through the specimen.


Sign in / Sign up

Export Citation Format

Share Document