Low-dimensional compounds containing cyanido groups. Part XXXV. Structure, spectral, thermal and magnetic properties of a binuclear CuII–biquinoline complex with bridging and terminal dicyanamide ligands

2018 ◽  
Vol 74 (11) ◽  
pp. 1469-1476
Author(s):  
Ivan Potočňák ◽  
Oleksandr Bukrynov ◽  
Katarína Ráczová ◽  
Erik Čižmár ◽  
Svitlana Vitushkina ◽  
...  

From the system CuCl2–biq–NaN(CN)2 (biq is 2,2′-biquinoline), the binuclear molecular complex bis(μ-dicyanamido-κ2 N 1:N 5)bis[(2,2′-biquinoline-κ2 N,N′)(dicyanamido-κN 1)copper(II)], [Cu2(C2N3)4(C18H12N2)2] or [Cu2(biq)2(dca)2(μ1,5-dca)2] (1) [dca is dicyanamide, N(CN)2 −] was isolated and characterized by crystal structure analysis, and spectral, thermal and magnetic measurements. IR spectroscopy confirmed the presence of the biq and dca ligands in 1. Its solid-state structure consists of discrete centrosymmetric binuclear copper(II) units with double end-to-end dca bridges. Each CuII atom is in a distorted square-pyramidal environment with the equatorial plane formed by two nitrile N atoms from bridging dca groups, one of the two N atoms of the chelate biq molecule and one nitrile N atom from a terminal dca ligand, whereas the second biq N atom occupies the axial position. Thermal decomposition of 1 in an air atmosphere proceeds gradually, with copper(I) cyanide being the final decomposition product. Magnetic measurements revealed the formation of alternating spin chains and a relatively strong exchange interaction within the binuclear units was also confirmed by Broken Symmetry DFT (density functional theory) calculations.

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 732 ◽  
Author(s):  
Takahiro Shimada ◽  
Koichiro Minaguro ◽  
Tao Xu ◽  
Jie Wang ◽  
Takayuki Kitamura

Beyond a ferroelectric critical thickness of several nanometers existed in conventional ferroelectric perovskite oxides, ferroelectricity in ultimately thin dimensions was recently discovered in SnTe monolayers. This discovery suggests the possibility that SnTe can sustain ferroelectricity during further low-dimensional miniaturization. Here, we investigate a ferroelectric critical size of low-dimensional SnTe nanostructures such as nanoribbons (1D) and nanoflakes (0D) using first-principle density-functional theory calculations. We demonstrate that the smallest (one-unit-cell width) SnTe nanoribbon can sustain ferroelectricity and there is no ferroelectric critical size in the SnTe nanoribbons. On the other hand, the SnTe nanoflakes form a vortex of polarization and lose their toroidal ferroelectricity below the surface area of 4 × 4 unit cells (about 25 Å on one side). We also reveal the atomic and electronic mechanism of the absence or presence of critical size in SnTe low-dimensional nanostructures. Our result provides an insight into intrinsic ferroelectric critical size for low-dimensional chalcogenide layered materials.


2016 ◽  
Vol 18 (37) ◽  
pp. 26177-26183 ◽  
Author(s):  
Xiaodong Xing ◽  
Jingjing Wang ◽  
Xiaoyu Kuang ◽  
Xinxin Xia ◽  
Cheng Lu ◽  
...  

The effect of Mg doping on the growth behavior and the electronic properties of aluminum clusters has been investigated theoretically using the CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization) method in combination with density functional theory calculations.


2019 ◽  
Author(s):  
Hassan Harb ◽  
Lee Thompson ◽  
Hrant Hratchian

Lanthanide hydroxides are key species in a variety of catalytic processes and in the preparation of corresponding oxides. This work explores the fundamental structure and bonding of the simplest lanthanide hydroxide, LnOH (Ln=La-Lu), using density functional theory calculations. Interestingly, the calculations predict that all structures of this series will be linear. Furthermore, these results indicate a valence electron configuration featuring an occupied sigma orbital and two occupied pi orbitals for all LnOH compounds, suggesting that the lanthanide-hydroxide bond is best characterized as a covalent triple bond.


2019 ◽  
Author(s):  
Hassan Harb ◽  
Lee Thompson ◽  
Hrant Hratchian

Lanthanide hydroxides are key species in a variety of catalytic processes and in the preparation of corresponding oxides. This work explores the fundamental structure and bonding of the simplest lanthanide hydroxide, LnOH (Ln=La-Lu), using density functional theory calculations. Interestingly, the calculations predict that all structures of this series will be linear. Furthermore, these results indicate a valence electron configuration featuring an occupied sigma orbital and two occupied pi orbitals for all LnOH compounds, suggesting that the lanthanide-hydroxide bond is best characterized as a covalent triple bond.


2019 ◽  
Author(s):  
Anshuman Kumar ◽  
Reinhard Schweitzer-Stenner ◽  
Bryan Wong

In this work, we carry out new time-dependent density functional theory calculations on the cationic tripeptide GAG in implicit and explicit water to determine the transitions that give rise to the observed CD signals of polyproline II and β-strand conformations. Our results reveal a plethora of electronic transitions that are governed by configurational interactions between multiple molecular orbital transitions of comparable energy. We also show that reproducing the CD spectra of polyproline II and β-strand conformations requires the explicit consideration of water molecules. The structure dependence of delocalized occupied orbitals contributes to the experimentally-observed invalidation of Flory’s isolated pair hypothesis.


2019 ◽  
Author(s):  
Anshuman Kumar ◽  
Reinhard Schweitzer-Stenner ◽  
Bryan Wong

In this work, we carry out new time-dependent density functional theory calculations on the cationic tripeptide GAG in implicit and explicit water to determine the transitions that give rise to the observed CD signals of polyproline II and β-strand conformations. Our results reveal a plethora of electronic transitions that are governed by configurational interactions between multiple molecular orbital transitions of comparable energy. We also show that reproducing the CD spectra of polyproline II and β-strand conformations requires the explicit consideration of water molecules. The structure dependence of delocalized occupied orbitals contributes to the experimentally-observed invalidation of Flory’s isolated pair hypothesis.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1525-1531 ◽  
Author(s):  
Wojciech Grochala

The enthalpy of four polymorphs of CaN has been scrutinized at 0 and 100 GPa using density functional theory calculations. It is shown that structures of diamagnetic calcium diazenide (Ca2N2) are preferred over the cubic ferromagnetic polymorph (CaN) postulated before, both at 0 and 100 GPa.


2021 ◽  
Vol 03 (02) ◽  
pp. 090-096
Author(s):  
Yusuke Ishigaki ◽  
Kota Asai ◽  
Takuya Shimajiri ◽  
Tomoyuki Akutagawa ◽  
Takanori Fukushima ◽  
...  

The crystal structures of a series of tetracyanonaphthoquinodimethanes fused with a selenadiazole or thiadiazole ring revealed that their molecular packing is determined mainly by two intermolecular interactions: chalcogen bond (ChB) and weak hydrogen bond (WHB). ChB between Se and a cyano group dictates the packing of selenadiazole derivatives, whereas the S-based ChB is much weaker and competes with WHB in thiadiazole analogues. This difference can be explained by different electrostatic potentials as revealed by density functional theory calculations. A proper molecular design that weakens WHB can change the contribution of ChB in determining the crystal packing of thiadiazole derivatives.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chih-Chuen Lin ◽  
Phani Motamarri ◽  
Vikram Gavini

AbstractWe present a tensor-structured algorithm for efficient large-scale density functional theory (DFT) calculations by constructing a Tucker tensor basis that is adapted to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach uses an additive separable approximation to the Kohn–Sham Hamiltonian and an L1 localization technique to generate the 1-D localized functions that constitute the Tucker tensor basis. Numerical results show that the resulting Tucker tensor basis exhibits exponential convergence in the ground-state energy with increasing Tucker rank. Further, the proposed tensor-structured algorithm demonstrated sub-quadratic scaling with system-size for both systems with and without a gap, and involving many thousands of atoms. This reduced-order scaling has also resulted in the proposed approach outperforming plane-wave DFT implementation for systems beyond 2000 electrons.


Sign in / Sign up

Export Citation Format

Share Document