scholarly journals Improving diffraction resolution using a new dehydration method

Author(s):  
Qingqiu Huang ◽  
Doletha M. E. Szebenyi

The production of high-quality crystals is one of the major obstacles in determining the three-dimensional structure of macromolecules by X-ray crystallography. It is fairly common that a visually well formed crystal diffracts poorly to a resolution that is too low to be suitable for structure determination. Dehydration has proven to be an effective post-crystallization treatment for improving crystal diffraction quality. Several dehydration methods have been developed, but no single one of them is suitable for all crystals. Here, a new convenient and effective dehydration method is reported that makes use of a dehydrating solution that will not dry out in air for several hours. Using this dehydration method, the resolution ofArchaeoglobus fulgidusCas5a crystals has been increased from 3.2 to 1.95 Å and the resolution ofEscherichia coliLptA crystals has been increased from <5 to 3.4 Å.

Functional studies on interferon would be helped by a three-dimensional structure for the molecule. However, it may be several years before the structure of the protein is determined by X-ray crystallography. We have therefore used available methods for predicting the secondary - and the tertiary - structure of a protein from its amino acid sequence to propose a tertiary model involving the packing of four a-helices. Details of this work have been published elsewhere (Sternberg & Cohen 1982).


1988 ◽  
Vol 16 (6) ◽  
pp. 949-953 ◽  
Author(s):  
JOHN P. PRIESTLE ◽  
HANS-PETER SCHÄR ◽  
MARKUS G. GRÜTTER

Summary The three-dimensional structure of human recombinant interleukin-1β has been determined at 0.24 nm resolution by X-ray crystallographic techniques. The partially refined model has a crystallographic R-factor of just under 19%. The structure is composed of 12 β-strands forming a complex network of hydrogen bonds. The core of the structure can best be described as a tetrahedron whose edges are each formed by two antiparallel β-strands. The interior of this structure is filled with hydrophobic side-chains. There is a 3-fold repeat in the folding of the polypeptide chain. Although this folding pattern suggests gene triplication, no significant internal sequence homology between topologically corresponding residues exists. The folding topology of interleukin-1β is very similar to that described by A. D. McLachlan [(1979) J. Mol. Biol. 133, 557–563] for soybean trypsin inhibitor.


Sign in / Sign up

Export Citation Format

Share Document