scholarly journals On cross-correlations, averages and noise in electron microscopy

Author(s):  
Michael Radermacher ◽  
Teresa Ruiz

Biological samples are radiation-sensitive and require imaging under low-dose conditions to minimize damage. As a result, images contain a high level of noise and exhibit signal-to-noise ratios that are typically significantly smaller than 1. Averaging techniques, either implicit or explicit, are used to overcome the limitations imposed by the high level of noise. Averaging of 2D images showing the same molecule in the same orientation results in highly significant projections. A high-resolution structure can be obtained by combining the information from many single-particle images to determine a 3D structure. Similarly, averaging of multiple copies of macromolecular assembly subvolumes extracted from tomographic reconstructions can lead to a virtually noise-free high-resolution structure. Cross-correlation methods are often used in the alignment and classification steps of averaging processes for both 2D images and 3D volumes. However, the high noise level can bias alignment and certain classification results. While other approaches may be implicitly affected, sensitivity to noise is most apparent in multireference alignments, 3D reference-based projection alignments and projection-based volume alignments. Here, the influence of the image signal-to-noise ratio on the value of the cross-correlation coefficient is analyzed and a method for compensating for this effect is provided.

Author(s):  
M. I. Buckett ◽  
L. D. Marks ◽  
D. E. Luzzi

A typical high resolution structure image contains a large amount of intensity information which is masked by both statistical and amorphous noise. One useful method of quantifying such images is to employ correlation techniques. When one seeks to quantify the atom column positions, correlation techniques can be used to decompose the image into separate motifs (of specific peak amplitudes and positions - each motif corresponding to a single column of atoms), thereby reducing the data to a more manageable form.This problem can be considered as the least squares minimization of the function: where I(r) is the image, and m(r) is the motif, and the unknowns are the positions, rj, of the motifs and their peak heights, αj. The standard approach is to look for peaks in the cross-correlation (equation 2) between the motif and image, to determine rj and αj


2019 ◽  
Author(s):  
Nikita Afonin ◽  
Elena Kozlovskaya ◽  
Jouni Nevalainen ◽  
Janne Narkilahti

Abstract. Studying the uppermost structure of the subsurface is a necessary part for solving many practical problems (exploration of minerals, groundwater studies, geoengineering, etc.). Practical application of active seismic methods is not always possible because of different reasons, such as logistical difficulties, high cost of work, high level of seismic and acoustic noise, etc. That is why developing and improving of passive seismic methods for these purposes is one of the important problems in applied geophysics. In our study, we describe the way of improving quality of Empirical Green’s Functions (EGFs), evaluated from high-frequency ambient seismic noise, by using of advanced technique of cross-correlation functions stacking in the time domain (in this paper we use term “high-frequency” for the frequencies higher than 1 Hz). In compare to existing techniques, based on weight-stacking, our proposed technique makes it possible to more significantly increase the signal-to-noise ratio and, therefore quality of the EGF. The technique is based on both iterative and global optimization algorithms, where the optimized parameter is a signal-to-noise ratio of an EGF, retrieved for each iteration. The technique has been tested with the field data acquired in an area with high level of industrial noise (Pyhäsalmi Mine, Finland) and in an area with low level of anthropogenic noise (Kuusamo Greenstone Belt, Finland). The results show that the our proposed technique can be used for extraction of EGFs from high-frequency seismic noise in practical problems of mapping of the shallow subsurface in areas with high and low level of high-frequency seismic noise.


Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1621-1634 ◽  
Author(s):  
Nikita Afonin ◽  
Elena Kozlovskaya ◽  
Jouni Nevalainen ◽  
Janne Narkilahti

Abstract. Studying the uppermost structure of the subsurface is a necessary part of solving many practical problems (exploration of minerals, groundwater studies, geoengineering, etc.). The practical application of active seismic methods for these purposes is not always possible for different reasons, such as logistical difficulties, high cost of work, and a high level of seismic and acoustic noise. That is why developing and improving passive seismic methods is one of the important problems in applied geophysics. In our study, we describe a way of improving the quality of empirical Green's functions (EGFs), evaluated from high-frequency ambient seismic noise, by using the advanced technique of cross-correlation function stacking in the time domain (in this paper we use term “high-frequency” for frequencies higher than 1 Hz). The technique is based on the global optimization algorithm, in which the optimized objective function is a signal-to-noise ratio of an EGF, retrieved at each iteration. In comparison to existing techniques, based, for example, on weight stacking of cross-correlation functions, our technique makes it possible to significantly increase the signal-to-noise ratio and, therefore, the quality of the EGFs. The technique has been tested with the field data acquired in an area with a high level of industrial noise (Pyhäsalmi Mine, Finland) and in an area with a low level of anthropogenic noise (Kuusamo Greenstone Belt, Finland). The results show that the proposed technique can be used for the extraction of EGFs from high-frequency seismic noise in practical problems of mapping of the shallow subsurface, both in areas with high and low levels of high-frequency seismic noise.


Author(s):  
Wenjun Huo ◽  
Peng Chu ◽  
Kai Wang ◽  
Liangting Fu ◽  
Zhigang Niu ◽  
...  

In order to study the detection methods of weak transient electromagnetic radiation signals, a detection algorithm integrating generalized cross-correlation and chaotic sequence prediction is proposed in this paper. Based on the dual-antenna test and cross-correlation information estimation method, the detection of aperiodic weak discharge signals under low signal-to-noise ratio is transformed into the estimation of periodic delay parameters, and the noise is reduced at the same time. The feasibility of this method is verified by simulation and experimental analysis. The results show that under the condition of low signal-to-noise ratio, the integrated method can effectively suppress the influence of 10 noise disturbances. It has a high detection probability for weak transient electromagnetic radiation signals, and needs fewer pulse accumulation times, which improves the detection efficiency and is more suitable for long-distance detection of weak electromagnetic radiation sources.


2014 ◽  
Vol 11 (9) ◽  
pp. 927-930 ◽  
Author(s):  
Brent L Nannenga ◽  
Dan Shi ◽  
Andrew G W Leslie ◽  
Tamir Gonen

Sign in / Sign up

Export Citation Format

Share Document