scholarly journals General Synthetic Route and Structural Characterization of New 3d-4f Materials

2014 ◽  
Vol 70 (a1) ◽  
pp. C1775-C1775
Author(s):  
Andres Vega ◽  
Bianca Baldo ◽  
Veronica Paredes-García ◽  
Evgenia Spodine ◽  
Diego Venegas-Yazigi

Within the field of coordination chemistry, the crystal engineering has been applied mainly through the design and synthesis of Metal-Organic Materials (MOMs), which are attractive not only by the wide variety of architectures and topologies that they present, but also by the potential applications in catalysis, ion exchange, molecular adsorption, fluorescence, nonlinear optics, and magnetism. From a structural and synthetic point of view, the literature shows that a wide variety of MOMs ranging from 0D to 3D structures have been rationally designed and synthesized by the appropriate selection of the metal centers and organic building blocks, as well as of the reaction pathways.1-3 In this work, we present the a general synthetic route and the structural characterization to a new MII(3d)-M'III(4f) (M = Co, Ni ; M' = Ce) MOMs. The assembly of paramagnetic ions of transition metal centers together with simple and versatile ligands permits to obtain this new heterometallic three dimensional structures. From a structural point of view, the 3D MOM, present a cubic structure and crystallizes in the Fm-3m spatial group. Details of synthetic methodology and structural characteristic of the synthesized MOM should be discussed. Figure 1: Lanthanide ions are cubically surrounded by transitions ions which defines a covalent cubic tridimensional lattice. Acknowledgements: The authors acknowledge financial support from FONDECYT 1130643 and Financiamiento Basal, FB0807. B.B. thanks UNAB Doctoral Scholarship 2013 and CONICYT Fellowship.

2020 ◽  
Author(s):  
Hui Li ◽  
Fengqian Chen ◽  
Xinyu Guan ◽  
JIali Li ◽  
Cuiyan Li ◽  
...  

<a>The growth of three-dimensional covalent organic frameworks (3D COFs) with new topologies is still considered as a great challenge due to limited availability of high-connectivity building units. Here we report the design and synthesis of novel 3D triptycene-based COFs, </a><a></a><a>termed</a> JUC-568 and JUC-569, following the deliberate symmetry-guided design principle. By combining a triangular prism (6-connected) node with a planar triangle (3-connected) or another triangular prism node, the targeted COFs adopt unreported <b>ceq </b>or non-interpenetrated <b>acs</b> topology, respectively. <a>Both materials</a> show permanent porosity and impressive performance <a>in the adsorption of CO<sub>2</sub></a> (~ 98 cm<sup>3</sup>/g at 273 K and 1 bar), CH<sub>4</sub> (~ 48 cm<sup>3</sup>/g at 273 K and 1 bar), and especially H<sub>2</sub> (up to 274 cm<sup>3</sup>/g or 2.45 wt% at 77 K and 1 bar), which is <a>highest </a>among <a>porous organic materials</a> reported to date. This research thus provides a promising strategy for diversifying 3D COFs based on complex building blocks and promotes their <a></a><a>potential applications</a> <a>in</a><a></a><a> energy storage and environment-related field</a>s.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1262-C1262
Author(s):  
Dominique Toledo ◽  
Yanko Moreno ◽  
Octavio Peña ◽  
Ricardo Baggio ◽  
Andrés Vega

Over the last decade the design and synthesis of metal-organic compounds with fascinating structural properties and potential applications as functional materials has been a major challenge in various fields of research.1Strategies for preparing these compounds are based on the careful selection of the constituent building blocks. 4'-(substituted)-4,2':6',4''-terpyridine ligands are considered versatile building blocks for the assembly of coordination polymers and networks with useful solid-state properties, such as magnetism, luminescence, redox activity, etc.2The divergent arrangements of N-donor atoms and the attachment of aryl substituents into the 4'-position of 4,2':6',4''-terpyridine allow to bridge two or more metal centers, giving rise to molecular assemblies of 1, 2 or 3 dimensions.3Our line of interest is the obtainment of compounds with emergent magnetic properties. Herein we present a copper complex surveying the new 4'-(quinolin-4-yl)-4,2':6',4''-terpyridine ligand (L), and formulated as [Cu(C5H1F6O2)2(C25H16N4·CHCl3)]n which was produced from the reaction of two equivalents of L with Cu(hfac)2, (hfac=hexafluoroacetylacetonate). The copper ion in trans-{CuN2(hfac)2} has an octahedral environment. The nitrogen atoms of the terminal pyridine rings coordinate to the paramagnetic centres, while the central ring remains uncoordinated. The linkage of the resulting polyhedra gives raise to an undulating 1D polymeric structure. Within these chains there are two main non-covalent interactions: π-stacking between the quinoline substituents and the pyridine rings and CH···F interactions due to CF3group of the hfac ligand. There are also weak CH···N, CH···π and π-π intermolecular interactions linking the L and CHCl3groups, which give stability to the crystal structure. Finally, we performed magnetic measurements, in order to determine the magnetic behaviour of our system. Acknowledgments: FONDECYT 1130433 project, CIPA of University of Concepción, LIA-MIF 836


2020 ◽  
Author(s):  
Hui Li ◽  
Fengqian Chen ◽  
Xinyu Guan ◽  
JIali Li ◽  
Cuiyan Li ◽  
...  

<a>The growth of three-dimensional covalent organic frameworks (3D COFs) with new topologies is still considered as a great challenge due to limited availability of high-connectivity building units. Here we report the design and synthesis of novel 3D triptycene-based COFs, </a><a></a><a>termed</a> JUC-568 and JUC-569, following the deliberate symmetry-guided design principle. By combining a triangular prism (6-connected) node with a planar triangle (3-connected) or another triangular prism node, the targeted COFs adopt unreported <b>ceq </b>or non-interpenetrated <b>acs</b> topology, respectively. <a>Both materials</a> show permanent porosity and impressive performance <a>in the adsorption of CO<sub>2</sub></a> (~ 98 cm<sup>3</sup>/g at 273 K and 1 bar), CH<sub>4</sub> (~ 48 cm<sup>3</sup>/g at 273 K and 1 bar), and especially H<sub>2</sub> (up to 274 cm<sup>3</sup>/g or 2.45 wt% at 77 K and 1 bar), which is <a>highest </a>among <a>porous organic materials</a> reported to date. This research thus provides a promising strategy for diversifying 3D COFs based on complex building blocks and promotes their <a></a><a>potential applications</a> <a>in</a><a></a><a> energy storage and environment-related field</a>s.


2013 ◽  
Vol 69 (6) ◽  
pp. 592-602 ◽  
Author(s):  
Pierre-Philippe Dechant

This paper shows how regular convex 4-polytopes – the analogues of the Platonic solids in four dimensions – can be constructed from three-dimensional considerations concerning the Platonic solids alone.Viathe Cartan–Dieudonné theorem, the reflective symmetries of the Platonic solids generate rotations. In a Clifford algebra framework, the space of spinors generating such three-dimensional rotations has a natural four-dimensional Euclidean structure. The spinors arising from the Platonic solids can thus in turn be interpreted as vertices in four-dimensional space, giving a simple construction of the four-dimensional polytopes 16-cell, 24-cell, theF4root system and the 600-cell. In particular, these polytopes have `mysterious' symmetries, that are almost trivial when seen from the three-dimensional spinorial point of view. In fact, all these induced polytopes are also known to be root systems and thus generate rank-4 Coxeter groups, which can be shown to be a general property of the spinor construction. These considerations thus also apply to other root systems such as A_{1}\oplus I_{2}(n) which induces I_{2}(n)\oplus I_{2}(n), explaining the existence of the grand antiprism and the snub 24-cell, as well as their symmetries. These results are discussed in the wider mathematical context of Arnold's trinities and the McKay correspondence. These results are thus a novel link between the geometries of three and four dimensions, with interesting potential applications on both sides of the correspondence, to real three-dimensional systems with polyhedral symmetries such as (quasi)crystals and viruses, as well as four-dimensional geometries arising for instance in Grand Unified Theories and string and M-theory.


2001 ◽  
Vol 57 (6) ◽  
pp. 859-865 ◽  
Author(s):  
Gastone Gilli ◽  
Valerio Bertolasi ◽  
Paola Gilli ◽  
Valeria Ferretti

Squaric acid, H2C4O4 (H2SQ), is a completely flat diprotic acid that can crystallize as such, as well as in three different anionic forms, i.e. H2SQ·HSQ−, HSQ− and SQ2−. Its interest for crystal engineering studies arises from three notable factors: (i) its ability of donating and accepting hydrogen bonds strictly confined to the molecular plane; (ii) the remarkable strength of the O—H...O bonds it may form with itself which are either of resonance-assisted (RAHB) or negative-charge-assisted [(−)CAHB] types; (iii) the ease with which it may donate a proton to an aromatic base which, in turn, back-links to the anion by strong low-barrier N—H+...O1/2− charge-assisted hydrogen bonds. Analysis of all the structures so far known shows that, while H2SQ can only crystallize in an extended RAHB-linked planar arrangement and SQ2− tends to behave much as a monomeric dianion, the monoanion HSQ− displays a number of different supramolecular patterns that are classifiable as β-chains, α-chains, α-dimers and α-tetramers. Partial protonation of these motifs leads to H2SQ·HSQ− anions whose supramolecular patterns include ribbons of dimerized β-chains and chains of emiprotonated α-dimers. The topological similarities between the three-dimensional crystal chemistry of orthosilicic acid, H4SiO4, and the two-dimensional one of squaric acid, H2C4O4, are finally stressed.


Synlett ◽  
2019 ◽  
Vol 30 (20) ◽  
pp. 2209-2215 ◽  
Author(s):  
Ke Du ◽  
Andrew C.-H. Sue

Rim-differentiated pillar[5]arenes (P[5]s) are intriguing macrocyclic molecular platforms with C 5-symmetry, but their conventional statistical syntheses suffer from low yields and laborious separation. Our group recently reported a ‘pre-oriented’ protocol that results in highly selective production of C 5-symmetric P[5]s among four constitutional isomers. Subsequently, we devised a more general divergent synthetic route starting with a common P[5] precursor with rim differentiation, followed by a series of high-yielding reactions that permit successive transformations of both rims freely. As a result, a variety of rim-differentiated P[5]s can be made to order in gram-scale quantities. This total solution not only populates the list of C 5-symmetric P[5]s, but also enables further design and synthesis of assorted five-fold organic building blocks towards complex supramolecular architectures.


RSC Advances ◽  
2016 ◽  
Vol 6 (79) ◽  
pp. 75916-75936 ◽  
Author(s):  
Ying Ma ◽  
Hong Li ◽  
Denzel Bridges ◽  
Peng Peng ◽  
Benjamin Lawrie ◽  
...  

As devices have become smaller, nanomaterials have become the preferred manufacturing building blocks due to lower material and joining energy costs. This review surveys progress in nanojoining methods, as compared to conventional joining processes.


2007 ◽  
Vol 79 (12) ◽  
pp. 2155-2177 ◽  
Author(s):  
Tapas Kumar Maji ◽  
Susumu Kitagawa

Remarkable advances in the recent development of porous compounds based upon coordination polymers have paved the way toward functional chemistry having potential applications such as gas storage, separation, and catalysis. From the synthetic point of view, the advantage is a designable framework, which can readily be constructed from building blocks, the so-called bottom-up assembly. Compared with conventional porous materials such as zeolites and activated carbons, porous inorganic-organic hybrid frameworks have higher potential for adsorption of small molecules because of their designability with respect to the coordination geometry around the central metal ion as well as size and probable multifunctionality of bridging organic ligands. Although rigidity and robustness of porous framework with different degree of adsorption are the most studied properties of metal-organic coordination frameworks, there are few studies on dynamic porous frameworks, which could open up a new dimension in materials chemistry.


2019 ◽  
Vol 75 (1) ◽  
pp. 38-45
Author(s):  
Zheng Xiang ◽  
Yue-Bin Shan ◽  
Tao Li ◽  
Chang-Cang Huang ◽  
Xi-He Huang ◽  
...  

Naphthalenediimides, an attractive class of electron-deficient organic dyes with rich redox and photoredox properties, have been investigated extensively as building blocks for coordination networks or metal–organic frameworks in recent decades. However, most of the available work has focused on d-block metal cations rather than f-block lanthanide ions, whose complexes exhibit a large variability in coordination numbers. In this article, four coordination polymers composed of naphthalenediimides and lanthanide cations, namely catena-poly[[[tris(nitrato-κ2 O,O′)lanthanide]-bis{μ-N,N′-bis[(1-oxidopyridin-1-ium-3-yl)methyl]-1,8:4,5-naphthalenetetracarboxdiimide-κ2 O:O′}-[tris(nitrato-κ2 O,O′)lanthanide]-μ-N,N′-bis[(1-oxidopyridin-1-ium-3-yl)methyl]-1,8:4,5-naphthalenetetracarboxdiimide-κ2 O:O′] methanol disolvate], {[Ln(C26H16N4O4)1.5(NO3)3]·CH3OH} n , with Ln = Eu, 1, Gd, 2, Dy, 3, and Er, 4, have been successfully synthesized under hydrothermal conditions. Single-crystal X-ray diffraction analyses revealed that the four compounds are isomorphic and that each asymmetric unit contains one nine-coordinated Ln centre, one and a half diimide ligands, three nitrate anions and one uncoordinated methanol molecule. In addition, each metal centre is surrounded by nine O atoms in a distorted tricapped trigonal–prismatic geometry. Two centres are bridged by two cis ligands to form a ring, which is further bridged by trans ligands to generate one-dimensional chains. Neighbouring chains are stacked via π–π interactions between pyridine rings to give a two-dimensional structure, which is stabilized by π–π interactions between naphthalene rings, forming the final three-dimensional supermolecular network. Solid-state optical diffuse-reflectance spectral studies indicate that compound 4 is a potential wide band gap semiconductor.


1997 ◽  
Vol 53 (4) ◽  
pp. 569-586 ◽  
Author(s):  
C. B. Aakeröy

The area broadly described as crystal engineering is currently expanding at a brisk pace. Imaginative schemes for supramolecular synthesis, and correlations between molecular structure, crystal packing and physical properties are presented in the literature with increasing regularity. In practice, crystal engineering can be many different things; synthesis, statistical analysis of structural data, ab initio calculations etc. Consequently, we have been provided with a new playing field where chemists from traditionally unconnected parts of the spectrum have exchanged ideas, defined goals and made creative contributions to further progress not only in crystal engineering, but also in other disciplines of chemistry. Crystal engineering is delineated by the nature and structural consequences of intermolecular forces, and the way in which such interactions are utilized for controlling the assembly of molecular building blocks into infinite architectures. Although it is important to acknowledge that a crystal structure is the result of a subtle balance between a multitude of non-covalent forces, this article will focus on design strategies based upon the hydrogen bond and will present a range of approaches that have relied on the directionality and selectivity of such interactions in the synthesis of predictable one-, two- and three-dimensional motifs.


Sign in / Sign up

Export Citation Format

Share Document