scholarly journals Explosives at Extreme Conditions: Polymorphism of 2,4-Dinitroanisole

2014 ◽  
Vol 70 (a1) ◽  
pp. C896-C896 ◽  
Author(s):  
Paul Coster ◽  
Craig Henderson ◽  
Steven Hunter ◽  
William Marshall ◽  
Colin Pulham

2,4-dinitroanisole (DNAN) is an energetic material, developed as an insensitive replacement for TNT in melt-cast explosive formulations. While DNAN-based formulations demonstrate greatly reduced sensitivity to accidental initiation compared to those using TNT, issues remain with the replacement of TNT with DNAN. For instance, DNAN based formulations have demonstrated catastrophic levels of irreversible growth during heat-cycling, with volume increases of up to 15% reported. [1] In order to investigate the role of polymorphism in the irreversible growth of DNAN, high-pressure and variable-temperature neutron and x-ray diffraction studies have been performed. Two polymorphs of DNAN have been found to exist at ambient temperature and pressure, the thermodynamic form, DNAN-I, and the kinetic form, DNAN-II.[2,3] The phase diagrams of both form-I and -II of DNAN have been explored for the first time. In the case of DNAN-II, two high-pressure phase transitions were found. DNAN-II initially transformed to DNAN-III, which at higher pressures transformed to DNAN-IV. In addition, variable temperature studies demonstrated that the DNAN-II to DNAN-III transition also occurs when DNAN-II is cooled below room temperature. The thermal expansion of the DNAN-II/III lattice was investigated from 150K to 363K, demonstrating that an abrupt change in the thermal behaviour of lattice parameters occurs at the DNAN-II/III transition. From these combined crystallographic studies, the structure of DNAN-III has been solved, showing it is closely related to DNAN-II. In the case of DNAN-I, high-pressure neutron powder diffraction studies demonstrated that it transforms to a new form (DNAN-V) that is distinct from DNAN-II,-III or -IV. Rietveld refinement of the high-pressure DNAN-I data also determined that the material exhibits negative linear compressibility, which is of interest given the use of DNAN as a shock-insensitive energetic material. Comparison of the behaviour of DNAN-I and –II under variable temperature and high-pressure conditions indicates that the kinetic form, DNAN-II, is the denser phase under all conditions studied. This work highlights the importance of crystallographic techniques in order to understand the polymorphism of energetic materials.

1997 ◽  
Vol 499 ◽  
Author(s):  
Steven Beaver ◽  
Gary N. Chesnut ◽  
Yogesh K. Vohra

ABSTRACTA high-pressure phase of gadolinium is completely described for the first time. This phase, HR24, is found to exist at 46 GPa. The structure is examined for evidence of delocalization of the f shell, and the evolution of the HR24 phase with increasing pressure is discussed.


2011 ◽  
Vol 673 ◽  
pp. 155-160 ◽  
Author(s):  
Peng Wan Chen ◽  
Xiang Gao ◽  
Jian Jun Liu ◽  
Hao Yin ◽  
Feng Lei Huang

Different TiO2 precursors were impacted by detonation-driven high velocity flyers to obtain high-pressure phases of titania under instantaneous high temperature and pressure. The factors affecting high-pressure phase synthesis such as loading conditions and titanium dioxide precursors were also studied. The structure and phase composition of the shocked samples are determined by X-ray diffraction (XRD). The microstructure of TiO2 after shock treatment was observed by transmission electron microscopy (TEM).


2018 ◽  
Vol 74 (2) ◽  
pp. 120-124 ◽  
Author(s):  
Daisuke Urushihara ◽  
Toru Asaka ◽  
Koichiro Fukuda ◽  
Hiroya Sakurai

The strontium tungstate compound Sr3W2O9 was prepared by a high-pressure synthesis technique. The crystal structure was determined by single-crystal X-ray diffraction and transmission electron microscopy. The structure was found to be a hettotype structure of the high-pressure phase of Ba3W2O9, which has corner-sharing octahedra with a trigonal symmetry. Sr3W2O9 has a monoclinic unit cell of C2/c symmetry. One characteristic of the structure is the breaking of the threefold rotation symmetry existing in the high-pressure phase of Ba3W2O9. The substitution of Sr at the Ba site results in a significant shortening of the interlayer distances of the [AO3] layers (A = Ba, Sr) and causes a distortion in the crystal structure. In Sr3W2O9, there is an off-centre displacement of W6+ ions in the WO6 octahedra. Such a displacement is also observed in the high-pressure phase of Ba3W2O9.


2000 ◽  
Vol 33 (2) ◽  
pp. 279-284 ◽  
Author(s):  
J.-E. Jørgensen ◽  
J. Staun Olsen ◽  
L. Gerward

ReO3has been studied at pressures up to 52 GPa by X-ray powder diffraction. The previously observed cubicIm3¯ high-pressure phase was shown to transform to a monoclinic MnF3-related phase at about 3 GPa. All patterns recorded above 12 GPa could be indexed on rhombohedral cells. The compressibility was observed to decrease abruptly at 38 GPa. It is therefore proposed that the oxygen ions are hexagonally close packed above this pressure, giving rise to two rhombohedral phases labelled I and II. The zero-pressure bulk moduliBoof the observed phases were determined and the rhombohedral phase II was found to have an extremely large value of 617 (10) GPa. It was found that ReO3transforms back to thePm3¯mphase found at ambient pressure.


2004 ◽  
Vol 92 (10) ◽  
Author(s):  
I.-K. Jeong ◽  
T. W. Darling ◽  
M. J. Graf ◽  
Th. Proffen ◽  
R. H. Heffner ◽  
...  

2019 ◽  
Vol 36 (4) ◽  
pp. 046103 ◽  
Author(s):  
Sheng Jiang ◽  
Jing Liu ◽  
Xiao-Dong Li ◽  
Yan-Chun Li ◽  
Shang-Ming He ◽  
...  

2009 ◽  
Vol 24 (6) ◽  
pp. 2089-2096 ◽  
Author(s):  
Shanmin Wang ◽  
Duanwei He ◽  
Yongtao Zou ◽  
Jianjun Wei ◽  
Li Lei ◽  
...  

Nanostructured bulk NiAl materials were prepared at high pressure and temperature (0–5.0 GPa and 600–1500 °C, respectively). The sintered samples were characterized by x-ray diffraction, scanning electron microscope, density, and indentation hardness measurements. The results show that NiAl nanoparticles may have a compressed surface shell, which may be the reason why NiAl nanomaterials were difficult to densify sintering using conventional methods and why high-pressure sintering was an effective approach. We also observed that B2-structured NiAl could undergo a temperature-dependent phase transition and could be transformed into Al0.9Ni4.22 below 1000 °C for the first time. It is interesting to note that Vickers hardness decreased as grain size decreased below ∼30 nm, indicating that the inverse Hall-Petch effect may be observed in nano-polycrystalline NiAl (n-NiAl) samples. Moreover, a tentative interpretation was developed for high-pressure nanosintering, based on the shell-core model of nanoparticles.


Author(s):  
Jack Binns ◽  
Garry J McIntyre ◽  
Simon Parsons

The pressure- and temperature-dependent phase transitions in the ferroelectric material rubidium hydrogen sulfate (RbHSO4) are investigated by a combination of neutron Laue diffraction and high-pressure X-ray diffraction. The observation of disordered O-atom positions in the hydrogen sulfate anions is in agreement with previous spectroscopic measurements in the literature. Contrary to the mechanism observed in other hydrogen-bonded ferroelectric materials, H-atom positions are well defined and ordered in the paraelectric phase. Under applied pressure RbHSO4undergoes a ferroelectric transition before transforming to a third, high-pressure phase. The symmetry of this phase is revised to the centrosymmetric space groupP21/c, resulting in the suppression of ferroelectricity at high pressure.


2009 ◽  
Vol 130 (12) ◽  
pp. 124509 ◽  
Author(s):  
D. Santamaría-Pérez ◽  
M. Ross ◽  
D. Errandonea ◽  
G. D. Mukherjee ◽  
M. Mezouar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document