scholarly journals In situ Raman spectroscopy of cubic boron nitride to 90 GPa and 800 K

2014 ◽  
Vol 70 (a1) ◽  
pp. C760-C760
Author(s):  
Shigeaki Ono

Cubic boron nitride (c-BN) has some outstanding properties, such as hardness, chemical inertness, high temperature stability, and high thermal conductivity. The Raman spectrum of c-BN exhibits two intense lines at 1054 and 1305 cm-1 under ambient conditions, corresponding to the Brillouin zone center transverse optical (TO) and longitudinal optical (LO) modes, respectively. Previous studies have reported the pressure and temperature dependences of the frequency shift of the modes up to 40 GPa and 2300 K. The Raman line of the LO mode overlaps an intense Raman line of diamond at pressures higher than 3 GPa. Therefore, it is difficult to observe the LO line in high-pressure experiments using the diamond anvil cell. In contrast, previous studies proposed that the TO mode could be used as the pressure calibrant in diamond anvil cells under high pressure and temperature conditions. In this study, we used a diamond anvil cell high-pressure apparatus [1] combined with a Raman spectrometer system to investigate changes in the Raman line of c-BN. The use of a synchrotron radiation source made it possible to determine the precise pressure in the sample chamber. In this study, the temperature and pressure dependences of the Raman spectrum of the TO mode of cubic boron nitride were calibrated for applications to a Raman spectroscopy pressure sensor in optical cells to about 800 K and 90 GPa. A significant deviation from linearity of the pressure dependence is confirmed at pressures above 20 GPa. At ambient temperature, dv/dP slopes are 3.41 and 2.04 cm-1/GPa at 0 and 90 GPa, respectively. The pressure dependence does not significantly change with temperature, as determined from experiments conducted up to 800 K. At pressures above 90 GPa, the Raman spectrum of the TO mode cannot be observed because of an overlap of the signals of cubic boron nitride and diamond used as the anvils in the high-pressure cell.

2007 ◽  
Vol 85 (10) ◽  
pp. 866-872 ◽  
Author(s):  
Muhieddine Safa ◽  
Zhaohui Dong ◽  
Yang Song ◽  
Yining Huang

Pressure-induced structural changes in di-iron nonacarbonyl [Fe2(CO)9] were examined by in situ Raman spectroscopy with the aid of a diamond anvil cell. Our results indicate that Fe2(CO)9 undergoes a pressure-induced phase transformation at about 0.9 GPa. Upon further compression, another structural transformation is identified at 7 GPa. In the low-pressure phase below 0.9 GPa, the π back-bonding between metal and carbonyl increases with increasing pressure. In the high-pressure phase above 7 GPa, the combination of high-pressure and laser irradiation induces a change in structure from Fe2(CO)9 to Fe2(CO)8. Fe2(CO)8 appears to adopt a structure with C2v rather than D3d or D2h symmetry. The metal–metal bond is gradually weakened under high pressures, and Fe2(CO)8 eventually decomposes by breaking the Fe–Fe bond when compressed up to 17.7 GPa.Key words: metal carbonyl, Raman spectroscopy, high pressure, diamond anvil cell.


RSC Advances ◽  
2015 ◽  
Vol 5 (102) ◽  
pp. 84216-84222 ◽  
Author(s):  
Chen Chen ◽  
Xiaoli Huang ◽  
Dongxiao Lu ◽  
Yanping Huang ◽  
Bo Han ◽  
...  

High-pressure Raman scattering studies on pure acetonitrile and an acetonitrile–water mixture at a molar ratio of (nCH3CN : nH2O) 1 : 7.25 were performed in a diamond anvil cell at room temperature.


RSC Advances ◽  
2014 ◽  
Vol 4 (30) ◽  
pp. 15534-15541 ◽  
Author(s):  
Tingting Yan ◽  
Kai Wang ◽  
Defang Duan ◽  
Xiao Tan ◽  
Bingbing Liu ◽  
...  

The effect of high pressure on two forms (α, β) of p-aminobenzoic acids (PABA) is studied in a diamond anvil cell using in situ Raman spectroscopy.


2011 ◽  
Author(s):  
Y. A. Sorb ◽  
N. Subramanian ◽  
T. R. Ravindran ◽  
P. Ch. Sahu ◽  
Alka B. Garg ◽  
...  

2015 ◽  
Vol 76 ◽  
pp. 120-124 ◽  
Author(s):  
Shigeaki Ono ◽  
Kenji Mibe ◽  
Naohisa Hirao ◽  
Yasuo Ohishi

2012 ◽  
Vol 1452 ◽  
Author(s):  
A.N. Kirichenko ◽  
A.K. Aseev ◽  
V.N. Denisov ◽  
I. Perezhogin ◽  
B.A. Kulnitskiy ◽  
...  

ABSTRACTThe carbon onions have been treated in a shear diamond anvil cell under pressure up to 43 GPa and shear deformation up to 2000. The recovered samples have been investigated by the Transmission Electron Microscopy (TEM) and the UV and visible Raman spectroscopy. The carbon onions was stable at pressure up to 30 GPa and 400 shear. Bigger shear deformation at pressures exceeding 30 GPa leads to the amorphous carbon. At 43 GPa shear deformation leads to transformation of onions to DLC.


Sign in / Sign up

Export Citation Format

Share Document