High pressure Raman spectroscopy investigation on acetonitrile and acetonitrile–water mixture

RSC Advances ◽  
2015 ◽  
Vol 5 (102) ◽  
pp. 84216-84222 ◽  
Author(s):  
Chen Chen ◽  
Xiaoli Huang ◽  
Dongxiao Lu ◽  
Yanping Huang ◽  
Bo Han ◽  
...  

High-pressure Raman scattering studies on pure acetonitrile and an acetonitrile–water mixture at a molar ratio of (nCH3CN : nH2O) 1 : 7.25 were performed in a diamond anvil cell at room temperature.

Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 75 ◽  
Author(s):  
Linfei Yang ◽  
Lidong Dai ◽  
Heping Li ◽  
Haiying Hu ◽  
Meiling Hong ◽  
...  

The phase stability of epsomite under a high temperature and high pressure were explored through Raman spectroscopy and electrical conductivity measurements in a diamond anvil cell up to ~623 K and ~12.8 GPa. Our results verified that the epsomite underwent a pressure-induced phase transition at ~5.1 GPa and room temperature, which was well characterized by the change in the pressure dependence of Raman vibrational modes and electrical conductivity. The dehydration process of the epsomite under high pressure was monitored by the variation in the sulfate tetrahedra and hydroxyl modes. At a representative pressure point of ~1.3 GPa, it was found the epsomite (MgSO4·7H2O) started to dehydrate at ~343 K, by forming hexahydrite (MgSO4·6H2O), and then further transformed into magnesium sulfate trihydrate (MgSO4·3H2O) and anhydrous magnesium sulfate (MgSO4) at higher temperatures of 373 and 473 K, respectively. Furthermore, the established P-T phase diagram revealed a positive relationship between the dehydration temperature and the pressure for epsomite.


Author(s):  
Lun Xiong ◽  
Pu Tu ◽  
Yongqing Hu ◽  
Xiang Hou ◽  
Shiyun Wu ◽  
...  

The equation of state (EOS) of mixture of Li[Formula: see text]Mn[Formula: see text]Co[Formula: see text]Ni[Formula: see text]O2 and LiNi[Formula: see text] Co[Formula: see text]Mn[Formula: see text]Al[Formula: see text]O2 was studied by synchrotron radiation X-ray diffraction (XRD) at room-temperature in a diamond anvil cell (DAC). The results showed that the hexagonal structure is maintained to the highest pressure of 23.1 GPa. The bulk modulus and its first derivative obtained from XRD data are [Formula: see text] GPa and [Formula: see text], respectively. In addition, we have investigated the high-pressure electrical conductivity of the mixture of Li[Formula: see text]Mn[Formula: see text]Co[Formula: see text]Ni[Formula: see text]O2 and LiNi[Formula: see text]Co[Formula: see text]Mn[Formula: see text]Al[Formula: see text]O2 to 22.9 GPa in a DAC. It is found that the resistance decreases with the increase of pressure and changes exponentially.


2005 ◽  
Vol 19 (06) ◽  
pp. 313-316
Author(s):  
X. M. QIN ◽  
Y. YU ◽  
G. M. ZHANG ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In-situ high-pressure energy dispersive X-ray diffraction measurements on CuBa 2- Ca 3 Cu 4 O 10 + δ (Cu-1234) have been performed by using diamond anvil cell (DAC) device with synchrotron radiation. The results suggest that the crystal structure of Cu-1234 superconductor is stable under pressures up to 34 GPa at room temperature. According to the Birch–Murnaghan equation of state, the bulk modulus is obtained to be ~ 150 GPa.


RSC Advances ◽  
2014 ◽  
Vol 4 (30) ◽  
pp. 15534-15541 ◽  
Author(s):  
Tingting Yan ◽  
Kai Wang ◽  
Defang Duan ◽  
Xiao Tan ◽  
Bingbing Liu ◽  
...  

The effect of high pressure on two forms (α, β) of p-aminobenzoic acids (PABA) is studied in a diamond anvil cell using in situ Raman spectroscopy.


2014 ◽  
Vol 70 (a1) ◽  
pp. C760-C760
Author(s):  
Shigeaki Ono

Cubic boron nitride (c-BN) has some outstanding properties, such as hardness, chemical inertness, high temperature stability, and high thermal conductivity. The Raman spectrum of c-BN exhibits two intense lines at 1054 and 1305 cm-1 under ambient conditions, corresponding to the Brillouin zone center transverse optical (TO) and longitudinal optical (LO) modes, respectively. Previous studies have reported the pressure and temperature dependences of the frequency shift of the modes up to 40 GPa and 2300 K. The Raman line of the LO mode overlaps an intense Raman line of diamond at pressures higher than 3 GPa. Therefore, it is difficult to observe the LO line in high-pressure experiments using the diamond anvil cell. In contrast, previous studies proposed that the TO mode could be used as the pressure calibrant in diamond anvil cells under high pressure and temperature conditions. In this study, we used a diamond anvil cell high-pressure apparatus [1] combined with a Raman spectrometer system to investigate changes in the Raman line of c-BN. The use of a synchrotron radiation source made it possible to determine the precise pressure in the sample chamber. In this study, the temperature and pressure dependences of the Raman spectrum of the TO mode of cubic boron nitride were calibrated for applications to a Raman spectroscopy pressure sensor in optical cells to about 800 K and 90 GPa. A significant deviation from linearity of the pressure dependence is confirmed at pressures above 20 GPa. At ambient temperature, dv/dP slopes are 3.41 and 2.04 cm-1/GPa at 0 and 90 GPa, respectively. The pressure dependence does not significantly change with temperature, as determined from experiments conducted up to 800 K. At pressures above 90 GPa, the Raman spectrum of the TO mode cannot be observed because of an overlap of the signals of cubic boron nitride and diamond used as the anvils in the high-pressure cell.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 976
Author(s):  
Paola Comodi ◽  
Maximiliano Fastelli ◽  
Giacomo Criniti ◽  
Konstantin Glazyrin ◽  
Azzurra Zucchini

High-pressure synchrotron X-ray diffraction was carried out on a single crystal of mascagnite, compressed in a diamond anvil cell. The sample maintained its crystal structure up to ~18 GPa. The volume–pressure data were fitted by a third-order Birch–Murnaghan equation of state (BM3-EOS) yielding K0 = 20.4(7) GPa, K’0 = 6.1(2), and V0 = 499(1) Å3, as suggested by the F-f plot. The axial compressibilities, calculated with BM3-EOS, were K0a = 35(3), K’0a = 7.7(7), K0b = 10(3), K’0b = 7(1), K0c = 25(1), and K’0c = 4.3(2) The axial moduli measured using a BM2-EOS and fixing K’0 equal to 4, were K0a = 52(2), K0b = 20 (1), and K0c = 29.6(4) GPa, and the anisotropic ratio of K0a:K0b:K0c = 1:0.4:0.5. The evolution of crystal lattice and geometrical parameters indicated no phase transition until 17.6 GPa. Sulphate polyhedra were incompressible and the density increase of 30% compared to investigated pressure should be attributed to the reduction of weaker hydrogen bonds. In contrast, some of them, directed along [100], were very short at room temperature, below 2 Å, and showed a very low compressibility. This configuration explains the anisotropic compressional behavior and the lowest compressibility of the a axis.


2011 ◽  
Author(s):  
Y. A. Sorb ◽  
N. Subramanian ◽  
T. R. Ravindran ◽  
P. Ch. Sahu ◽  
Alka B. Garg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document