scholarly journals Optimization in S-SAD phasing - difference between solved and unsolved structure

2014 ◽  
Vol 70 (a1) ◽  
pp. C613-C613
Author(s):  
Jan Stránský ◽  
Tomáš Kovaľ ◽  
Lars Østergaard ◽  
Jarmila Dušková ◽  
Tereza Skálová ◽  
...  

Development of X-ray diffraction technologies have made de novo phasing of protein structures by single-wavelength anomalous dispersion by sulphur (S-SAD) more common. As anomalous differences in the sulphur atomic factors are in the order of errors of measurement, careful intensity reading and data processing are crucial. S-SAD was used for de novo phasing of a small 12 kDa protein with 4 sulphur atoms per molecule at 2.3 Å, where the data did not enable a straightforward structure solution. Data processing was performed using XDS [1] and scaling using XSCALE. The sulphur substructure was determined by SHELXD [2] and phases were obtained from SHELXE [2]. Both algorithms strongly depend on input parameters and default values did not lead to the correct phases. Therefore a systematic search of optimal values of several parameters was used to find a solution. This method helped to confirm sulphur substructure and to differentiate the handedness of the solutions. Moreover, a script for comfortable conversion of SHELX outputs to MTZ format was developed, using programmes included in the CCP4 package [3]. The previously unsolvable protein structure was successfully resolved with the described procedure. This work was supported by the Grant Agency of the Czech Technical University in Prague, (SGS13/219/OHK4/3T/14), the Czech Science Foundation (P302/11/0855), project BIOCEV CZ.1.05/1.1.00/02.0109 from the ERDF.

2011 ◽  
Vol 19 (1) ◽  
pp. 19-29 ◽  
Author(s):  
James Doutch ◽  
Michael A. Hough ◽  
S. Samar Hasnain ◽  
Richard W. Strange

The sulfur SAD phasing method allows the determination of protein structuresde novowithout reference to derivatives such as Se-methionine. The feasibility for routine automated sulfur SAD phasing using a number of current protein crystallography beamlines at several synchrotrons was examined using crystals of trimericAchromobacter cycloclastesnitrite reductase (AcNiR), which contains a near average proportion of sulfur-containing residues and two Cu atoms per subunit. Experiments using X-ray wavelengths in the range 1.9–2.4 Å show that we are not yet at the level where sulfur SAD is routinely successful forautomatedstructure solution and model building using existing beamlines and current software tools. On the other hand, experiments using the shortest X-ray wavelengths available on existing beamlines could be routinely exploited to solve and produce unbiased structural models using the similarly weak anomalous scattering signals from the intrinsic metal atoms in proteins. The comparison of long-wavelength phasing (the Bijvoet ratio for nine S atoms and two Cu atoms is ∼1.25% at ∼2 Å) and copper phasing (the Bijvoet ratio for two Cu atoms is 0.81% at ∼0.75 Å) forAcNiR suggests that lower data multiplicity than is currently required for success should in general be possible for sulfur phasing if appropriate improvements to beamlines and data collection strategies can be implemented.


2019 ◽  
Vol 75 (11) ◽  
pp. 959-968 ◽  
Author(s):  
Aaron S. Brewster ◽  
Asmit Bhowmick ◽  
Robert Bolotovsky ◽  
Derek Mendez ◽  
Petrus H. Zwart ◽  
...  

A nonlinear least-squares method for refining a parametric expression describing the estimated errors of reflection intensities in serial crystallographic (SX) data is presented. This approach, which is similar to that used in the rotation method of crystallographic data collection at synchrotrons, propagates error estimates from photon-counting statistics to the merged data. Here, it is demonstrated that the application of this approach to SX data provides better SAD phasing ability, enabling the autobuilding of a protein structure that had previously failed to be built. Estimating the error in the merged reflection intensities requires the understanding and propagation of all of the sources of error arising from the measurements. One type of error, which is well understood, is the counting error introduced when the detector counts X-ray photons. Thus, if other types of random errors (such as readout noise) as well as uncertainties in systematic corrections (such as from X-ray attenuation) are completely understood, they can be propagated along with the counting error, as appropriate. In practice, most software packages propagate as much error as they know how to model and then include error-adjustment terms that scale the error estimates until they explain the variance among the measurements. If this is performed carefully, then during SAD phasing likelihood-based approaches can make optimal use of these error estimates, increasing the chance of a successful structure solution. In serial crystallography, SAD phasing has remained challenging, with the few examples of de novo protein structure solution each requiring many thousands of diffraction patterns. Here, the effects of different methods of treating the error estimates are estimated and it is shown that using a parametric approach that includes terms proportional to the known experimental uncertainty, the reflection intensity and the squared reflection intensity to improve the error estimates can allow SAD phasing even from weak zinc anomalous signal.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Michael Zoller ◽  
Hubert Huppertz

AbstractThe rare earth oxoborates REB5O8(OH)2 (RE = Ho, Er, Tm) were synthesized in a Walker-type multianvil apparatus at a pressure of 2.5 GPa and a temperature of 673 K. Single-crystal X-ray diffraction data provided the basis for the structure solution and refinement. The compounds crystallize in the monoclinic space group C2 (no. 5) and are composed of a layer-like structure containing dreier and sechser rings of corner sharing [BO4]5− tetrahedra. The rare earth metal cations are coordinated between two adjacent sechser rings. Further characterization was performed utilizing IR spectroscopy.


2020 ◽  
Vol 75 (6-7) ◽  
pp. 597-603
Author(s):  
Birgit Fuchs ◽  
Hubert Huppertz

AbstractThe non-centrosymmetric scandium borate ScB6O9(OH)3 was obtained through a high-pressure/high-temperature experiment at 6 GPa and 1473 K. Single-crystal X-ray diffraction revealed that the structure is isotypic to InB6O9(OH)3 containing borate triple layers separated by scandium layers. The compound crystallizes in the space group Fdd2 with the lattice parameters a = 38.935(4), b = 4.4136(4), and c = 7.6342(6) Å. Powder X-ray diffraction and vibrational spectroscopy were used to further characterize the compound and verify the proposed structure solution.


2013 ◽  
Vol 6 (1) ◽  
pp. 308 ◽  
Author(s):  
Mikael Elias ◽  
Dorothee Liebschner ◽  
Jurgen Koepke ◽  
Claude Lecomte ◽  
Benoit Guillot ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (9) ◽  
pp. e24227 ◽  
Author(s):  
Xiang Liu ◽  
Heng Zhang ◽  
Xiao-Jun Wang ◽  
Lan-Fen Li ◽  
Xiao-Dong Su

Author(s):  
Dorota A. Kowalska ◽  
Vasyl Kinzhybalo ◽  
Yuriy I. Slyvka ◽  
Marek Wołcyrz

The novel π-coordination compound [CuI(m-dmphast)NO3], where m-dmphast = 5-(allylthio)-1-(3,5-dimethylphenyl)-1H-tetrazole, is characterized using single-crystal X-ray diffraction and crystallizes in a noncentrosymmetric space group. Additionally, for the first time in this group of materials, the streaks of X-ray diffuse scattering in the reciprocal space sections were observed and described. This gave the possibility for a deeper insight into the local structure of the title compound. The conjecture about the origin of diffuse scattering was derived from average structure solution. It was then confirmed using the local structure modelling. The extended [Cu(m-dmphast)NO3]∞ chains, connected by weak interactions, produce layers which can exist in two enantiomeric forms, one of which predominates.


1993 ◽  
Vol 48 (6) ◽  
pp. 771-777 ◽  
Author(s):  
Ulrich Abram ◽  
Bernd Lorenz

Novel rhenium complexes with terminal thiocarbonyl groups have been synthesized from ReCl3(Me2PhP)3 and sodium diethyldithiocarbamate. mer-(Diethyldithiocarbamato)tris-(dimethylphenylphosphine)(thiocarbonyl)rhenium(I), mer-[Re(CS)(Me2PhP)3(Et2dtc)], and tris(diethyldithiocarbamato)(thiocarbonyl)rhenium(III), [Re(CS)(Et2dtc)3] have been studied by infrared and NMR spectroscopy, mass spectrometry and X-ray diffraction.mer-[Re(CS)(Me2PhP)3(Et2dtc)] crystallizes orthorhombic in the space group Pna21 with a = 1516.1(2), b = 2189.8(2) and c = 1035.6(1) pm. Structure solution and refinement converged at R = 0.042. The coordination geometry is a distorted octahedron. The Re—C bond length is found to be 184(2) pm.[Re(CS)(Et2dtc)3] crystallizes monoclinic in the space group P21/c with a = 962.2(6), b = 1744.0(2), c = 1537.4(6) pm and β = 96.21(1)°. The final R value is 0.028. In the monomeric complex the rhenium atom is seven-coordinate with an approximate pentagonal-bipyramidal coordination sphere and a rhenium-carbon distance of 181(1) pm.


Sign in / Sign up

Export Citation Format

Share Document